Computer Science ›› 2025, Vol. 52 ›› Issue (3): 17-32.doi: 10.11896/jsjkx.241000043
• 3D Vision and Metaverse • Previous Articles Next Articles
SONG Xingnuo1, WANG Congyan2, CHEN Mingkai2
CLC Number:
[1]LI Y.How to name and define“metaverse”and other concepts? Consensus reached at the National Science and Technology Terminology Committee Symposium[EB/OL].https://www.chinanews.com.cn/sh/2022/09-14/9852341.shtml. [2]MILDENHALL B,SRINIVASAN P P,TANCIK M,et al.NeRF:Representing scenes as neural radiance fields for view synthesis[C]// European Conference on Computer Vision.Springer,2020:405-421. [3]WANG P,LIU L J,LIU Y,et al.NeuS:Learning Neural Impli-cit Surfaces by Volume Rendering for Multi-view Reconstruction[J].arXiv:2106.10689,2023. [4]YARIV L,GU J T,KASTEN Y,et al.Volume Rendering ofNeural Implicit Surfaces[J].arXiv:2106.12052,2021. [5]LIN C H,MA W C,TORRALBA A,et al.BARF:Bundle-adjusting neural radiance fields[C]// ICCV.2021:5741-5751. [6]TRUONG P,RAKOTOSAONA M J,MANHARDT F,et al.SPARF:Neural radiance fields from sparse and noisy poses[C]//CVPR.2023:4190-4200. [7]BIAN W J,WANG Z R,LI K J,et al.NoPe-neRF:Optimising neural radiance field with no pose prior[C]// CVPR.2023:4160-4169. [8]BIAN J W,BIAN W J,PRISACARIU V A,et al.PoRF:Pose Residual Field for Accurate Neural Surface Reconstruction[J].arXiv:2310.07449,2024. [9]HEDMAN P,SRINIVASAN P P,MILDENHALL B,et al.Ba-king neural radiance fields for real-time view synthesis[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:5875-5884. [10]REISER C,PENG S,LIAO Y,et al.KiloNeRF:Speeding upneural radiance fields with thousands of tiny mlps[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:14 335-14345. [11]PHUOC N T,LI F,XIAO L.SNeRF:Stylized Neural Implicit Representations for 3D Scenes[J].arXiv:2207.02363,2022. [12]CHEN Z,FUNKHOUSER T,HEDMAN P,et al.MobileNeRF:Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023. [13]YARIV L,HEDMAN P,REISER C,et al.BakedSDF:Meshing Neural SDFs for Real-Time View Synthesis[J].arXiv:2302.14859,2023. [14]TANG J X,ZHOU H,CHEN X K,et al.Delicate Textured Mesh Recovery from NeRF via Adaptive Surface Refinement[J].arXiv:2303.02091,2023. [15]VERBIN D,HEDMAN P,MILDENHALL B,et al.Ref-Nerf:Structured view-dependent appearance for neural radiance fields[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2022:5481-5490. [16]YU A,LI R L,TANCIK M,et al.PlenOctrees for real-time rendering of neural radiance fields[C]// ICCV.2021. [17]WANG L,ZHANG J K,LIU X H,et al.Fourier plenoctrees for dynamic radiance field rendering in real-time[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:13524-13534. [18]YU A,YE V,TANCIK M,et al.pixelNeRF:Neural radiancefields from one or few images[J].arXiv:2012.02190,2020. [19]CHEN A,XU Z X,ZHAO F Q,et al.MVSNeRF:Fast generalizable radiance field reconstruction from multiview stereo[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:14124-14133. [20]HU T,SLIU S,CHEN Y L,et al.EfficientNeRF efficient neuralradiance fields[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:12902-12911. [21]LIU L J,GU J T,LIN K Z,et al.Neural sparse voxel fields[J].arXiv:2007.11571,2021. [22]WU L,LEE J Y,BHATTAD A,et al.Diver:Realtime and accurate neural radiance fields with deterministic integration for volume rendering[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:16200-16209. [23]MULLER T,EVANS E,SCHIED C,et al.Instant NeuralGraphics Primitives with a Multiresolution Hash Encoding [J].ACM Transactions on Graphics,2022,41(4):102. [24]TREVITHICK A,YANG B.GRF:Learning a general radiance field for 3D representation and rendering[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:15182- 15192. [25]JAIN A,TANCIK T,ABBEEL P.Putting NeRF on a diet:Semantically consistent few-shot view synthesis[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:5885-5894. [26]XU D J,JIANG Y F,WANG P H,et al.SinNeRF:Trainingneural radiance fields on complex scenes from a single image[J].arXiv:2204.00928,2022. [27]MILDENHALL B,SRINIVASAN P P,TANCIK M,et al.NeRF:Representing scenes as neural radiance fields for view synthesis[C]// European Conference on Computer Vision.Springer,2020:405-421. [28]JENSEN R,DAHL A,VOGIATZIS G,et al.Large scale multi-view stereopsis evaluation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:406- 413. [29]MILDENHALL B,SRINIVASAN P P,ORTIZ-CAYON R,et al.Local light field fusion:Practical view synthesis with prescriptive sampling guidelines[J].ACM Transactions on Gra-phics(TOG),2019,38(4):1-14. [30]KYRIAZI L M,RUPPRECHT C,LAINA I,et al.ReaLFusion:360° reconstruction of any object from a single image[J].arXiv:2302.10663,2023. [31]LIU R S,WU R D,HOORICK B V,et al.Zero-1-to-3:Zero-shot One Image to 3D Object[J].arXiv:2303.1132,2023. [32]DENG C Y,JIANG C Y,QI C R,et al.NeRDi:Single-View NeRF Synthesis with Language-guided Diffusion as General Image Priors[J].arXiv:2212.03267,2022. [33]WANG G C,CHEN Z X,LOY C C,et al.SparseNeRF:Distilling Depth Ranking for Few-shot Novel View Synthesis[J].arXiv:2303.16196,2023. [34]SEO S,CHANG Y J,KWAK N.FlipNeRF:Flipped Reflection Rays for Few-shot Novel View Synthesis[J].arXiv:2306.1772,2023. [35]PARK K,SINHA U,BARRON J T,et al.Nerfies:Deformable neural radiance fields[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2020:5865-5874. [36]PUMAROLA A,CORONA E,PONS-MOLL G P,et al.D-NeRF:Neural radiance fields for dynamic scenes[C]// Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10318-10327. [37]TRETSCHK E,TEWARI A,OLLYANIK V,et al.Non-rigidneural radiance fields:Reconstruction and novel view synthesis of a dynamic scene from monocular video[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:12959-12970. [38]LI T Y,SLAVEHEVA M,ZOLLHOEFER M,et al.Neural 3D video synthesis from multi-view video[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5521-5531. [39]FANG J M,YI T R,WANG X G,et al.Fast dynamic radiance fields with time-aware neural voxels[C]// SIGGRAPH Asia Conference.2022:1-9. [40]MILDENHALL B,HEDMAN P,MARTIN-BRUALLA R,et al.NeRF in the dark:High dynamic range view synthesis from noisy raw images[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16190-16199. [41]LI Y Z,LI S,SITZMANN V,et al.3D neural scene representations for visuomotor control[J].arXiv:2107.04004,2021. [42]CAO A,JOHNSON J.HexPlane:A fast representation for dynamic scenes[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:130-141. [43]LEE J,LEE S,JO C,et al.SemCity:Semantic Scene Generation with Triplane Diffusion[J].arXiv:2403.0777,2024. [44]PENG S D,DONG J T,WANG Q Q,et al.Animatable neural radiance fields for modeling dynamic human bodies[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:14314-14323. [45]WANG Z Y,BAGAUTDINOV T,LOMBARDI S,et al.Lear-ning compositional radiance fields of dynamic human heads[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:5704-5713. [46]HONG Y,PENG B,XIAO H Y,et al.HeadNeRF:A real-timeNeRF-based parametric head model[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:20374-20384. [47]ZHANG J B,LI X Y,WAN Z Y,et al.FDNeRF:Few-shot dynamic neural radiance fields for face reconstruction and expression editing[C]// SIGGRAPH Asia Conference.2022:1-9. [48]SHAO R Z,ZHENG Z R,TU H Z,et al.Tensor4D:Efficient neural 4D decomposition for high-fidelity dynamic reconstruction and rendering[C]// Proceedings of the IEEE/CVFConfe-rence on Computer Vision and Pattern Recognition.2024:16632-16642. [49]ZHU Z X,CHEN Y T,WU Z R,et al.LATITUDE:Robotic global localization with truncated dynamic low-pass filter in city-scale NeRF[C]// IEEE International Conference on Robotics and Automation(ICRA).IEEE,2023:8326-8332. [50]CHEN J H,QIN Y P,LIU L J,et al.NeRF-HuGS:ImprovedNeural Radiance Fields in Non-static Scenes Using Heuristics-guided Segmentation[J].arXiv:2403.17537,2024. [51]JIANG C B,YANG J,HE S,et al.NeuralSlice:Neural 3D Triangle Mesh Reconstruction via Slicing 4D Tetrahedral Meshes.[C]//Proceedings of the International Conference on Machine Learning.New York:ACM,2023. [52]KERBL B,KOPANAS G,LEIMKVHLER T,et al.3D gaussian splatting for real-time radiance field rendering[J].ACM Tran-sactions on Graphics(ToG),2023,42(4):1-14. [53]GUEDON A,LEPETIT V.SuGaR:Surface-Aligned GaussianSplatting for Efficient 3D Mesh Reconstruction and High-Quality Mesh Rendering[J].arXiv:2311.12775,2023. [54]WACZYNSKA J,BORYCKI P,TADEJA S,et al.GaMeS:Mesh-Based Adapting and Modification of Gaussian Splatting[J].arXiv:2402.0145,2024. [55]CHEN Y W,HE T,HUANG D,et al.MeshAnything:Artist-Created Mesh Generation with Autoregressive Transformers[J].arXiv:2406.10163,2024. [56]LIU Y,GUAN H,LUO C C,et al.CityGaussian:Real-timeHigh-quality Large-Scale Scene Rendering with Gaussians[J].arXiv:2404.01133,2024. [57]ZHU Z H,FAN Z W,JIANG Y F,et al.FSGS:Real-Time Few-shot View Synthesis using Gaussian Splatting Show affiliations[J].arXiv:2312.00451,2023. [58]XIONG H L,MUTTUKURU S,UPADHYAY R,et al.SparseGS:Real-Time 360° Sparse View Synthesis using Gaussian Splatting[J].arXiv:2312.00206v2,2024. [59]YANG C,LI S K,FANG J M,et al.GaussainObject:Just Taking Four Images to Get A High-Quality 3D Object with Gaussian Splatting[J].arXiv:2402.10259,2024. [60]LI J H,ZHANG J W,BAI X,et al.DNGaussian:OptimizingSparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization[J].arXiv:2403.06912,2024. [61]CHARATAN D,LI S Z,TAGLIASACCHI A,et al.pixelSplat:3D Gaussian Splats from Image Pairs for Scalable Generalizable 3D Reconstruction[J].arXiv:312.12337,2024. [62]SZYMANOWICZ S,RUPPRECHT C,VEDALDI A.SplatterImage:Ultra-Fast Single-View 3D Reconstruction[J].arXiv:2312.13150,2024. [63]CHANG A X,THOMAS F H,GUIBAS L J,et al.ShapeNet:An information-rich 3D model repository[J].arXiv:1512.03012,2015. [64]ZHANG J W,LI J H,YU X H,et al.CoR-GS:Sparse-View 3D Gaussian Splatting via Co-Regularization[J].arXiv:2405.12110,2024. [65]LIU S H,ZHOU H,LIU Z,et al.Structure Gaussian SLAMwith Manhattan World Hypothesis[J].arXiv:2405.20031,2024. [66]POOLE B,JAIN A,BARRON J T,et al.DreamFusion:Text-to-3D using 2D diffusion[J].arXiv:2209.14988,2022. [67]TANG J X,REN J W,ZHOU H,et al.DreamGaussian:Generative gaussian splatting for efficient 3D content creation[J].ar-Xiv:2309.16653,2023. [68]LIN C H,GAO J,TANG L,et al.Magic3D:High-resolutiontext-to-3d content creation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2023:300-309. [69]CHEN Z L,WANG F,WANG Y K,et al.Text-to-3D usingGaussian Splatting[J].arXiv:2309.16585,2024. [70]YU Y H,ZHU S N,QIN H,et al.BoostDream:Efficient Refining for High-Quality Text-to-3D Generation from Multi-View Diffusion[J].arXiv:2401.16764,2024. [71]LIANG Y X,YANG X,LIN J T,et al.LucidDreamer:Towards high-fidelity text-to-3D generation via interval score matching[J].arXiv:2311.1128,2024. [72]DI D L,YANG J H,LUO C F,et al.Hyper-3DG:Text-to-3D Gaussian Generation via Hypergraph[J].arXiv:2403.09236,2024. [73]LIN Y T,DAI Z Z,ZHU S Y,et al.Gaussian-Flow:4D Reconstruction with Dynamic 3D Gaussian Particle[J].arXiv:2312.03431,2023. [74]LI Z,CHEN Z,LI Z,et al.Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis[J].arXiv:2312.16812,2023. [75]KRATIMENOS A,LEI J,DANIILIDIS K.DynMF:Neural Motion Factorization for Real-time Dynamic View Synthesis with 3D Gaussian Splatting[J].arXiv:2312.00112,2023. [76]YANG Z Y,YANG H Y,PAN Z J,et al.Real-time photorealistic dynamic scene representation and rendering with 4D gaussian splatting[J].arXiv:2310.10642,2023. [77]SHAW R,SONG J,MOREAU A,et al.SWAGS:Sampling Windows Adaptively for Dynamic 3D Gaussian Splatting[J].arXiv:2312.13308,2023. [78]SUN J K,JIAO H,LI G Y,et al.3DGStream:On-the-Fly Training of 3D Gaussians for Efficient Streaming of Photo-Realistic Free-Viewpoint Videos[J].arXiv:2403.01444,2024. [79]ZHANG T,CONG Y,LI X M,et al.Robot tactile sensing:Vision based tactile sensor for force perception[C]// IEEE Annual International Conference on CYBER Technology in Automation,Control,and Intelligent Systems(CYBER).2018:1360-1365. [80]CUI S W,WAN R,HU J Y,et al.In-hand object localization using a novel high-resolution visuotactile sensor[J].Transactions on Industrial Electronics,2021,69(6):6015-6025. [81]ZHANG L W,WANG Y,JIANG Y.Tac3D:A novel vision-based tactile sensor for measuring forces distribution and estimating friction coefficient distribution[J].arXiv:2202.06211,2022. [82]HU J Y,CUI S W,WANG S,et al.GelStereo Palm:A novelcurved visuotactile sensor for 3D geometry sensing[C]// IEEE Transactions on Industrial Informatics.2023:1-10. [83]ZHANG X,ZHANG Y,MA Y,et al.RealSense:Real-time compressive spectrum sensing testbed over TV white space[C]// IEEE 18th International Symposium on World of Wireless,Mobile and Multimedia Networks(WoWMoM).Macau:IEEE Press,2017:1-3. [84]TROFATTER J A,DLOUHY S R,DEMYER W,et al.Pelizaeus-Merzbacher disease:Tight linkage to proteolipid protein gene exon variant[J].Proceedings of the National Academy of Sciences,1989,86(23):9427-9430. [85]KUPPUSWAMY N,ALSPACH A,UTTAMCHANDANI A,et al.Soft-Bubble grippers for robust and perceptive manipulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).2020:9917-9924. [86]LI S J,YE L Q,XIA C K,et al.Design of a tactile sensing robo-tic gripper and its grasping method[C]// IEEE International Conference on Systems,Man,and Cybernetics(SMC).2021:894- 901. [87]DU Y P,ZHANG G L,ZHANG Y Z,et al.High-resolution 3-dimensional contact deformation tracking for fingervision sensor with dense random color pattern[J].IEEE Robotics and Automation Letters,2021,6(2):2147-2154. [88]ZHANG G L,DU Y P,YU H Y,et al.DelTact:A visionbased tactile sensor using a dense color pattern[J].IEEE Robotics and Automation Letters,2022,7(4):10778-10785. [89]LI Y Z,BAI P P,CAO H,et al.Imaging dynamic three-dimensional traction stresses[J].Science Advances,2022,8(11):984. [90]DO W K,KENNEDY M.Densetact:Optical tactile sensor for dense shape reconstruction[C]// IEEE International Conference on Robotics and Automation(ICRA).2022:6188-6194. [91]COMI M,LIN Y J,CHURCH A,et al.TouchSDF:A DeepSDF Approach for 3D Shape Reconstruction using Vision-Based Tactile Sensing[J].arXiv:2311.12602,2023. [92]SWANN A,STRONG M,DO W K,et al.Touch-GS:Visual-Tactile Supervised 3D Gaussian Splatting[J].arXiv:2403.09875,2024. [93]YIN F K,CHEN X,ZHANG C,et al.Shapegpt:3D shape ge-neration with a unified multi-modal language model[J].arXiv:2311.17618,2023. [94]QI Z Y,FANG Y,SUN Z Y,et al.Gpt4point:A unified framework for point-language understanding and generation[J].ar-Xiv:2312.02980,2023. [95]YANG Y,SUN F Y,WEIHS L,et al.Holodeck:Languageguided generation of 3D embodied Ai environments[C]// CVPR.IEEE/CVF,2024:20-25. [96]ZHOU X Y,RAN X J,XIONG Y J,et al.GALA3D:Towards text-to-3D complex scene generation via layoutguided generative gaussian splatting[J].arXiv:2402.07207,2024. [97]TORRE F D L,FANG C M,HUANG H,et al.Llmr:Real-time prompting of interactive worlds using large language models[J].arXiv:2309.12276,2023. [98]SUN C Y,HAN J L,DENG W J,et al.3D-gpt:Procedural 3D modeling with large language models[J].arXiv:2310.12945,2023. [99]HU Z N,LSCEN A,JAIN A,et al.SceneCraft:An LLM agent for synthesizing 3D scene as Blender code[J].arXiv:2403.01248,2024. [100]CHEN G K,WANG W G.A Survey on 3D Gaussian Splatting[J].arXiv:2401.03890,2024. [101]GAO K,GAO Y,HE H J,et al.NeRF:Neural Radiance Field in 3D Vision,A Comprehensive Review[J].arXiv:2210.00379,2023. [102]BARRON J T,MILDENHALL B,VERBIN D,et al.Mip-NeRF 360:Unbounded anti-aliased neural radiance fields[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5470-5479. [103]HEDMAN P,PHILIP J,PRICE T,et al.Deep blending for free-viewpoint image-based rendering[J].ACM Transactions on Graphics(TOG),2018,37(6):1- 15. [104]DAI A,CHANG A X,SAVVA M,et al.ScanNet:Richly-annotated 3D reconstructions of indoor scenes[C]//Computer Vision and Pattern Recognition(CVPR).IEEE Press,2017. [105]SNAVALY N,SEITZ S M,SZELISIK R.Modeling the World from Internet Photo Collections[J].International Journal of Computer Vision,2008,80(2):189-210. [106]MAO A H,DAI C L,GAO L,et al.STD-Net:Structure-Preserving and Topology-Adaptive Deformation Network for Single-View 3D Reconstruction[J].IEEE Transactions on Visualization and Computer Graphics,2021,29(3):1785-1798. [107]HONG Y C,ZHANG K,GU J X,et al.LRM:Large Recon-struction Model for Single Image to 3D[J].arXiv:2311.04400,2024. [108]WU T,GAO L,ZHANG L X,et al.STAR-TM:STructureAware Reconstruction of Textured Mesh From Single Image[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(12):15680-15693. [109]YUAN Z L,CAO J K,LI Z X,et al.SD-MVS:Segmentation-Driven Deformation Multi-View Stereowith Spherical Refinement and EM optimization[J].arXiv:2401.06385,2024. |
[1] | ZHONG Yue, GU Jieming. 3D Reconstruction of Single-view Sketches Based on Attention Mechanism and Contrastive Loss [J]. Computer Science, 2025, 52(3): 77-85. |
[2] | CHENG Dawei, WU Jiaxuan, LI Jiangtong, DING Zhijun, JIANG Changjun. Study on Evaluation Framework of Large Language Model’s Financial Scenario Capability [J]. Computer Science, 2025, 52(3): 239-247. |
[3] | HUANG Xueqin, ZHANG Sheng, ZHU Xianqiang, ZHANG Qianzhen, ZHU Cheng. Generative Task Network:New Paradigm for Autonomic Task Planning and Execution Based on LLM [J]. Computer Science, 2025, 52(3): 248-259. |
[4] | CAO Mingwei, ZHANG Di, PENG Shengjie, LI Ning, ZHAO Haifeng. Survey of Metaverse Technology Development and Applications [J]. Computer Science, 2025, 52(3): 4-16. |
[5] | WANG Jie, WANG Chuangye, XIE Jiucheng, GAO Hao. Animatable Head Avatar Reconstruction Algorithm Based on Region Encoding [J]. Computer Science, 2025, 52(3): 50-57. |
[6] | WANG Xingbo, ZHANG Hao, GAO Hao, ZHAI Mingliang, XIE Jiucheng. Talking Portrait Synthesis Method Based on Regional Saliency and Spatial Feature Extraction [J]. Computer Science, 2025, 52(3): 58-67. |
[7] | XU Siyao, ZENG Jianjun, ZHANG Weiyan, YE Qi, ZHU Yan. Dependency Parsing for Chinese Electronic Medical Record Enhanced by Dual-scale Collaboration of Large and Small Language Models [J]. Computer Science, 2025, 52(2): 253-260. |
[8] | ZENG Zefan, HU Xingchen, CHENG Qing, SI Yuehang, LIU Zhong. Survey of Research on Knowledge Graph Based on Pre-trained Language Models [J]. Computer Science, 2025, 52(1): 1-33. |
[9] | DUN Jingbo, LI Zhuo. Survey on Transmission Optimization Technologies for Federated Large Language Model Training [J]. Computer Science, 2025, 52(1): 42-55. |
[10] | ZHENG Mingqi, CHEN Xiaohui, LIU Bing, ZHANG Bing, ZHANG Ran. Survey of Chain-of-Thought Generation and Enhancement Methods in Prompt Learning [J]. Computer Science, 2025, 52(1): 56-64. |
[11] | LI Tingting, WANG Qi, WANG Jiakang, XU Yongjun. SWARM-LLM:An Unmanned Swarm Task Planning System Based on Large Language Models [J]. Computer Science, 2025, 52(1): 72-79. |
[12] | YAN Yusong, ZHOU Yuan, WANG Cong, KONG Shengqi, WANG Quan, LI Minne, WANG Zhiyuan. COA Generation Based on Pre-trained Large Language Models [J]. Computer Science, 2025, 52(1): 80-86. |
[13] | CHENG Zhiyu, CHEN Xinglin, WANG Jing, ZHOU Zhongyuan, ZHANG Zhizheng. Retrieval-augmented Generative Intelligence Question Answering Technology Based on Knowledge Graph [J]. Computer Science, 2025, 52(1): 87-93. |
[14] | LIU Changcheng, SANG Lei, LI Wei, ZHANG Yiwen. Large Language Model Driven Multi-relational Knowledge Graph Completion Method [J]. Computer Science, 2025, 52(1): 94-101. |
[15] | LIU Yumeng, ZHAO Yijing, WANG Bicong, WANG Chao, ZHANG Baomin. Advances in SQL Intelligent Synthesis Technology [J]. Computer Science, 2024, 51(7): 40-48. |
|