Computer Science ›› 2025, Vol. 52 ›› Issue (6): 74-81.doi: 10.11896/jsjkx.240500017
• High Performance Computing • Previous Articles Next Articles
ZHANG Yaolin1,2, LIU Xiaonan1, DU Shuaiqi1,2, LIAN Demeng1,2
CLC Number:
[1]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M B,et al.Generative Adversarial Nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2.2014:2672-2680. [2]ZHU J Y,KRÄHENBÜHL P,SHECHTMAN E,et al.Generative Visual Manipulation on the Natural Image Manifold[C]//European Conference on Computer Vision.2016:597-613. [3]LEDIG C,THEIS L,HUSZAR F,et al.Photo-realistic singleimage super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:4681-4690. [4]ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:1125-1134. [5]GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improvedtraining of wasserstein GANS[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:5769-5779. [6]DENG C,YANG E,LIU T,et al.Unsupervised semantic-pre-serving adversarial hashing for image search[J].IEEE Transactions on Image Processing 28,2019,28(8):4032-4044. [7]PRESKILL J.Quantum computing in the NISQ era and beyond[J].Quantum,2018,2(1):79. [8]BIAMONTE J,WITTEK P,PANCOTTI N,et al.Quantum ma-chine learning[J].Nature,2017,549(7671):195-202. [9]LLOYD S,WEEDBROOK C.Quantum generative adversariallearning[J].Physical Review Letters,2018,121(4):040502. [10]ASSOUEL A,JACQUIER A,KONDRATYEV A.A quantumgenerative adversarial network for distributions[J].arXiv:2110.02742v1,2021. [11]HUANG H L,DU Y,GONG M,et al.Experimental quantum generative adversarial networks for image generation[J].Physical Review Applied,2021,16(2):024051. [12]CHU C,SKIPPER G,SWANY M,et al.IQGAN:robust quantum generative adversarial network for image synthesis on NISQ Devices[J].arXiv:2210.16857v1,2022. [13]TSANG S L,WEST M T,ERFANI S M,et al.Hybrid quantum-classical generative adversarial network for high resolution image generation[J].arXiv:2212.11614v2,2023. [14]JIANG Y D,WANG M M.Data reconstruction based on quantum generative adversarial networks[J].Computer Engineering and Applications,2024,60(5):156-164. [15]CHEN S Y C,YANG C H H,QI J,et al.Variational quantum circuits for deep reinforcement learning[J].IEEE Access,2020,8(1):141007-141024. [16]PIRVU B,MURG V,CIRAC J I,et al.Matrix product operator representations[J].New Journal of Physics,2010:12(2):025012. [17]LIU X N,LIAN D M,DU S Q,et al.Simulation of limited entangled quantum fourier transform based on matrix product state[J].Computer Science,2024,51(9):80-86. [18]GAO Z F,CHENG S,HE R Q,et al.Compressing deep neural networks by matrix product operators[J].Physical Review Research,2020,2(2):023300. [19]LI J G,ZHAO H T,SUN S Y.KL-divergence-based policy optimization[J].Computer Science,2019,46(6):212-217. [20]STEIN S A,BAHERI B,CHEN D,et al.QuGAN:a generative adversarial network through quantum states[J].arXiv:2010.09036,2020. |
[1] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[2] | XIONG Qibing, MIAO Qiguang, YANG Tian, YUAN Benzheng, FEI Yangyang. Malicious Code Detection Method Based on Hybrid Quantum Convolutional Neural Network [J]. Computer Science, 2025, 52(3): 385-390. |
[3] | CHEN Chao, YAN Wenjie, XUE Guixiang. Parameterized Quantum Circuits Based Quantum Neural Networks for Data Classification [J]. Computer Science, 2024, 51(11A): 231200112-7. |
[4] | YAN Zhihao, ZHOU Zhangbing, LI Xiaocui. Survey on Generative Diffusion Model [J]. Computer Science, 2024, 51(1): 273-283. |
[5] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[6] | CHEN Wanze, CHEN Jiazhen, HUANG Liqing, YE Feng, HUANG Tianqiang, LUO Haifeng. Controlled Facial Gender Forgery Combining Wavelet Transform High Frequency Information [J]. Computer Science, 2023, 50(11A): 221000241-10. |
[7] | Renata WONG. Application of Early Quantum Algorithms in Quantum Communication,Error Correction and Other Fields [J]. Computer Science, 2022, 49(6A): 645-648. |
[8] | SHI Da, LU Tian-liang, DU Yan-hui, ZHANG Jian-ling, BAO Yu-xuan. Generation Model of Gender-forged Face Image Based on Improved CycleGAN [J]. Computer Science, 2022, 49(2): 31-39. |
[9] | TAN Xin-yue, HE Xiao-hai, WANG Zheng-yong, LUO Xiao-dong, QING Lin-bo. Text-to-Image Generation Technology Based on Transformer Cross Attention [J]. Computer Science, 2022, 49(2): 107-115. |
[10] | LIU Xiao-nan, SONG Hui-chao, WANG Hong, JIANG Duo, AN Jia-le. Survey on Improvement and Application of Grover Algorithm [J]. Computer Science, 2021, 48(10): 315-323. |
[11] | ZHANG Yang, MA Xiao-hu. Anime Character Portrait Generation Algorithm Based on Improved Generative Adversarial Networks [J]. Computer Science, 2021, 48(1): 182-189. |
[12] | XU Yong-shi, BEN Ke-rong, WANG Tian-yu, LIU Si-jie. Study on DCGAN Model Improvement and SAR Images Generation [J]. Computer Science, 2020, 47(12): 93-99. |
[13] | Renata WONG. Uncertainty Principle as Related to Quantum Computation [J]. Computer Science, 2020, 47(1): 40-50. |
[14] | XU Qiang, ZHONG Shang-ping, CHEN Kai-zhi, ZHANG Chun-yang. Optimized Selection Method of Cycle-consistent Loss Coefficient of CycleGAN in Image Generation with Different Texture Complexity [J]. Computer Science, 2019, 46(1): 100-106. |
|