Computer Science ›› 2025, Vol. 52 ›› Issue (6): 159-166.doi: 10.11896/jsjkx.240400022
• Database & Big Data & Data Science • Previous Articles Next Articles
LIU Huayong, ZHU Ting
CLC Number:
[1]CHI L H,ZHU X Q.Hashing techniques:a survey and taxonomy[J].Association for Computing Machinery,2017,50(1):1-36. [2]ZHANG J,PENG Y X,YUAN M K.SCH-GAN:semi-supervised cross-modal hashing by generative adversarial network[J].IEEE Transactions on Cybernetics,2020,50(2):489-502. [3]CHEN N,DUAN Y X,SUN Q F.Cross-modal search research literature review[J].Computer Science and Exploration,2021,15(8):1390-1404. [4]WU B T,YANG Q,ZHENG W S,et al.Quantized correlation hashing for fast cross-modal search[C]//Proceedings of the 24th International Conference on Artificial Intelligence.2015:3946-3952. [5]ZHEN Y,YEUNG D Y.Co-regularized hashing for multimodal data[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems.2012:1376-1384. [6]LIN Z J,DING G G,HU M Q,et al.Semantics-preserving hashing for cross-view retrieval[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.2015:3864-3872. [7]ABID H,HENG C L,MEHBOOB H,et al.A gradual approach to knowledge distillation in deep supervised hashing for large-scale image retrieval[J].Computers and Electrical Engineering.2024,120(PC):109799-109799. [8]DING G G,GUO Y C,ZHOU J L,et al.Large-scale cross-modality search via collective matrix factorization hashing[J].IEEE Transactions on Image Processing.2016,25(11):5427-5440. [9]KUMAR S,UDUPA R.Learning hash functions for cross-view similarity search[C]//Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence.2011:1360-1365. [10]RASTEGARIM,CHOI J,FAKHRAEI S,et al.Predictable dual-view hashing[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning.2013:1328-1336. [11]LI Y Q,LU Z W,LIU C.Unsupervised Triplet Hashing Method Based on Contrastive Learning [J].Application Research of Computers,2023,40(5):1434-1440 [12]PENG L K,LU X M,XU Q B.Research progress on cross-modal hash retrieval based on deep learning[J].Journal of Data Communications,2022,208(3):32-38. [13]JIANGQ Y,LI W J.Deep Cross-modal hashing[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.2017:3270-3278. [14]CAOY,LIU B,LONG M S,et al.Cross-modal hamming hashing[C]//Proceedings of the European Conference on Computer Vision.2018:202-218. [15]ZOUX T,WANG X Z,BAKKER E M,et al.Multi-label semantics preserving based deep cross-modal hashing[J].Signal Processing:Image Communication,2021,93:116131. [16]XIE Y C,ZENG X H,WANG T H,et al.Deep online cross-modal hashing by a co-training mechanism[J].Knowledge-Based Systems,2022,257:109888. [17]HARDOOND R,SZEDMAK S,SHAWE-TAYLOR J.Canonical correlation analysis:an overview with application to learning methods[J].Neural Computation,2004,16(12):2639-2664. [18]HUM Q,YANG Y,SHEN F M,et al.Collective reconstructive embeddings for cross-modal hashing[J].IEEE Transactions on Image Processing,2019,28(6):2770-2784. [19]HU P,ZHU H Y,LIN J,et al.Unsupervised contrastive cross-modal hashing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(3):3877-3889. [20]YAOD,LI Z X,LI B,et al.Similarity graph-correlation reconstruction network for unsupervised cross-modal hashing[J].Expert Syst.Appl.,2024,273:1-13. [21]JIANGQ Y,LI W J.Discrete latent factor model for cross-modal hashing[J].IEEE Transactions on Image Processing,2019,28(7):3490-3501. [22]CHENY,ZHANG H,TIAN Z B,et al.Enhanced discrete multi-modal hashing:more constraints yet less time to learn[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(3):1177-1190. [23]LI Z,YAO T,WANG L L,et al.Supervisedcontrastive discrete hashing for cross-modal retrieval[J].Knowledge-Based Systems,2024,295:1-13. [24]ZHANG C,ZHENG W S.Semi-supervised multi-view discretehashing for fast image search[J].IEEE Transactions on Image Processing,2017,26(6):2604-2617. [25]WU F,LI S S,GAO G W,et al.Semi-supervised cross-modalhashing via modality-specific and cross-modal graph convolutional networks[J].Pattern Recognation,2023,136(C):1-10. [26]DENGC,CHEN Z J,LIU X L,et al.Triplet-based deep hashing network for cross-modal retrieval[J].IEEE Transactions on Image Processing,2018,27(8):3893-3903. [27]ZHENL L,HU P,WANG X,et al.Deep supervised cross-modal retrieval[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:10386-10395. [28]HUANG Z,HU H W,SU M.Hybrid DAER based cross-modal retrieval exploiting deep representation learning.Entropy[J].Entrpoy,2023,25(8):1216-1234. [29]GOODFELLOWI J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.2014:2672-2680. [30]WANGB K,YANG Y,XU X,et al.Adversarial cross-modal retrieval[C]//Proceedings of the 25th ACM International Confe-rence on Multimedia.2017:154-162. [31]PENG Y X,QI J W.CM-GANs:cross-modal generative adver-sarial networks for common representation learning[J].Association for Computing Machinery,2019,15(22):1-24. [32]ANDREJ K,LI F F.Deep visual-semantic alignments for genera-ting image descriptions[C]//2015 IEEE Conference on ComputerVision and Pattern Recognition.2015:3128-3137. [33]CAI L W,ZHU L,ZHANG H Y,et al.DA-GAN:Dualattention generative adversarial network for cross-modal retrieval[J].Future Internet,2022,14(2):43-43. [34]WEN K,GU X,CHENG Q.Learning dual semantic relationswith graph attention for image-text matching[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(7):2866-2879. [35]ZHANGL,CHEN L T,OU W H,et al.Semi-supervised cross-modal retrieval with graph-based semantic alignment network[J].Computers and Electrical Engineering,2022,102(C):1-19. [36]CHUAT S,TANG J H,HONG R C,et al.NUS-WIDE:a real-world web image database from national university of Singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval.2009:1-9. [37]HUISKESM J,LEW M S.The mir flickr retrieval evaluation[C]//Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval.2008:39-43. [38]WANG X Z,ZOU X T,BAKKER E M,et al.Self-constrainingand attention-based hashing network for bit-scalable cross-modal retrieval[J].Neurocomputing,2020,400:255-271. [39]ZENG Z X,MAO W J.A comprehensive empirical study of vision-language pre-trained model for supervised cross-modal retrieval[J].arXiv:2201.02772,2022. [40]YANG X H,WANG Z,LIU W H,et al.Deep adversarialmulti-label cross-modal hashing algorithm[J].International Journal of Multimedia Information Retrieval,2023,12:1-12. [41]NI H M,FANG X Z,KANG P P,et al.SCH:Symmetric consistent hashing for cross-modal retrieval[J].Signal Processing,2024,215(C):1-12. |
[1] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
[2] | GAO Xinjun, ZHANG Meixin, ZHU Li. Study on Short-time Passenger Flow Data Generation and Prediction Method for RailTransportation [J]. Computer Science, 2025, 52(6A): 240600017-5. |
[3] | DU Yuanhua, CHEN Pan, ZHOU Nan, SHI Kaibo, CHEN Eryang, ZHANG Yuanpeng. Correntropy Based Multi-view Low-rank Matrix Factorization and Constraint Graph Learning for Multi-view Data Clustering [J]. Computer Science, 2025, 52(6A): 240900131-10. |
[4] | BAO Shenghong, YAO Youjian, LI Xiaoya, CHEN Wen. Integrated PU Learning Method PUEVD and Its Application in Software Source CodeVulnerability Detection [J]. Computer Science, 2025, 52(6A): 241100144-9. |
[5] | ZHANG Yaolin, LIU Xiaonan, DU Shuaiqi, LIAN Demeng. Hybrid Quantum-classical Compressed Generative Adversarial Networks Based on Matrix Product Operators [J]. Computer Science, 2025, 52(6): 74-81. |
[6] | WANG Xiao, LI Guanxiong, LI Na, YUAN Dongfeng. Semi-supervised Learning Flow Field Prediction Method Based on Gaussian Mixture Discrimination [J]. Computer Science, 2025, 52(6): 88-95. |
[7] | WU You, WANG Jing, LI Peipei, HU Xuegang. Semi-supervised Partial Multi-label Feature Selection [J]. Computer Science, 2025, 52(4): 161-168. |
[8] | SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230. |
[9] | XIN Yongjie, CAI Jianghui, HE Yanting, SU Meihong, SHI Chenhui, YANG Haifeng. Multi-view Clustering Based on Cross-structural Feature Selection and Graph Cycle AdaptiveLearning [J]. Computer Science, 2025, 52(2): 145-157. |
[10] | LIU Yulu, WU Shuhong, YU Dan, MA Yao, CHEN Yongle. Cross-age Identity Membership Inference Based on Attention Feature Decomposition [J]. Computer Science, 2024, 51(9): 401-407. |
[11] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[12] | HE Zhilin, GU Tianhao, XU Guanhua. Few-shot Semi-supervised Semantic Image Translation Algorithm Based on Prototype Correction [J]. Computer Science, 2024, 51(8): 224-231. |
[13] | XU Bei, LIU Tong. Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders [J]. Computer Science, 2024, 51(8): 281-296. |
[14] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[15] | ZHUO Peiyan, ZHANG Yaona, LIU Wei, LIU Zijin, SONG You. CTGANBoost:Credit Fraud Detection Based on CTGAN and Boosting [J]. Computer Science, 2024, 51(6A): 230600199-7. |
|