Computer Science ›› 2025, Vol. 52 ›› Issue (6): 274-285.doi: 10.11896/jsjkx.240600006
• Computer Graphics & Multimedia • Previous Articles Next Articles
GENG Sheng, DING Weiping, JU Hengrong, HUANG Jiashuang, JIANG Shu, WANG Haipeng
CLC Number:
[1]ULLAH Z,USMAN M,JEON M,et al.Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation[J].Information Sciences,2022,608:1541-1556. [2]TANG Y,YANG D,LI W,et al.Self-supervised pre-training of swin transformers for 3d medical image analysis[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:20730-20740. [3]HE Y,GE R,QI X,et al.Learning better registration to learn better few-shot medical image segmentation:Authenticity,diversity,and robustness[J].IEEE Transactions on Neural Networks and Learning Systems,2022,35(2):2588-2601. [4]CHEN L,BENTLEY P,MORI K,et al.DRINet for medicalimage segmentation[J].IEEE Transactions on Medical Imaging,2018,37(11):2453-2462. [5]LIU F,ZHANG Z,ZHOU R.Automatic modulation recognition based on CNN and GRU[J].Tsinghua Science and Technology,2021,27(2):422-431. [6]SUN P,ZHANG R,JIANG Y,et al.Sparse R-CNN:An end-to-end framework for object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(12):15650-15664. [7]ZHANG Z M,GUO Y,MA C X,et al.GT-4S:Graph Trans-former for Scene Sketch Semantic Segmentation[J] Journal of Software,2025,36(3):1375-1389. [8]ZHANG C,JIANG W,ZHANG Y,et al.Transformer and CNN hybrid deep neural network for semantic segmentation of very-high-resolution remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-20. [9]XIE Y,ZHANG J,SHEN C,et al.Cotr:Efficiently bridging cnn and transformer for 3d medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2021:24th International Conference,Strasbourg,France,September 27-October 1,2021,Proceedings,Part III 24.Springer International Publishing,2021:171-180. [10]OLAF R,FISCHER P,BROX T.U-net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,proceedings,part III 18.Springer International Publishing,2015:234-241. [11]ANDRIY M.3D MRI brain tumor segmentation using autoencoder regularization[C]//Brainlesion:Glioma,Multiple Sclerosis,Stroke and Traumatic Brain Injuries:4th International Workshop,BrainLes 2018,Held in Conjunction with MICCAI 2018,Granada,Spain,September 16,2018,Revised Selected Papers,Part II 4.Springer International Publishing,2019:311-320. [12]KINGMA D,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [13]WANG W,CHEN C,DING M,et al.Transbts:Multimodalbrain tumor segmentation using transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2021:109-119. [14]HATAMIZADEH A,TANG Y,NATH V,et al.Unetr:Transformers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:574-584. [15]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16×16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [16]HATAMIZADEH A,NATH V,TANG Y,et al.Swin unetr:Swin transformers for semantic segmentation of brain tumors in mri images[C]//International MICCAI Brainlesion Workshop.Cham:Springer International Publishing,2021:272-284. [17]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [18]CHEN J,LU Y,YU Q,et al.Transunet:Transformers make strong encoders for medical image segmentation[J].arXiv:2102.04306,2021. [19]HUANG D M,DAI L,WEI L F et al.A secure outsourcing fusion denoising scheme for multi-frame remote sensing images[J].Journal of Computer Research and Development,2017,54(10):2378-2389. [20]GOYAL B,DOGRA A,AGRAWAL S,et al.Image denoising review:From classical to state-of-the-art approaches[J].Information Fusion,2020,55:220-244. [21]CROITORU F,HONDRU V,IONESUC R,et al.Diffusionmodels in vision:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(9):10850-10869. [22]YANG L,ZHANG Z,SONG Y,et al.Diffusion models:A comprehensive survey of methods and applications[J].ACM Computing Surveys,2023,56(4):1-39. [23]WU J,FU R,FANG H,et al.Medsegdiff:Medical image seg-mentation with diffusion probabilistic model[C]//Medical Imaging with Deep Learning.PMLR,2024:1623-1639. [24]WU J,JI W,FU H,et al.Medsegdiff-v2:Diffusion based medical image segmentation with transformer[J].arXiv:2301.11798,2023. [25]XING Z,WAN L,FU H,et al.Diff-unet:A diffusion embedded network for volumetric segmentation[J].arXiv:2303.10326,2023. [26]WOLLEB J,ROBIN S,BIEDER F,et al.Diffusion models forimplicit image segmentation ensembles[C]//International Conference on Medical Imaging with Deep Learning.PMLR,2022:1336-1348. [27]ZHOU T Y,DING W P,HUANG J S,et al.Fuzzy Logic Guided Deep Neural Network with Multi-granularity [J].Pattern Re-cognition and Artificial Intelligence,2023,36(9):778-792. [28]KUMAR D,AGRAWAL R K,KUMAR P.Bias-corrected intuitionistic fuzzy c-means with spatial neighborhood information approach for human brain MRI image segmentation[J].IEEE Transactions on Fuzzy Systems,2020,30(3):687-700. [29]李季,胡锦萍,乔敏,王艳.一种针对脑部图像分割强度不均匀性的改进方法[J].重庆工商大学学报(自然科学版),2023,40(1):34-39. [30]YANG L,WANG S,LIEW A.Fine-Grained Lip Image Segmentation using Fuzzy Logic and Graph Reasoning[J].IEEE Tran-sactions on Fuzzy Systems, 2024,32(2):349-359. [31]ZHOU M,SHANG C,LI G,et al.Transformation-based fuzzy rule interpolation with Mahalanobis distance measures supported by Choquet integral[J].IEEE Transactions on Fuzzy Systems,2022,31(4):1083-1097. [32]SONG S,JIA Z,YANG J,et al.Image segmentation based onfuzzy low-rank structural clustering[J].IEEE Transactions on Fuzzy Systems,2023,31(7):2153-2166. [33]LIU Z,TAN Y,HE Q,et al.SwinNet:Swin transformer drives edge-aware RGB-D and RGB-T salient object detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(7):4486-4497. [34]PHAM T.The Kolmogorov-Sinai entropy in the setting of fuzzy sets for image texture analysis and classification[J].Pattern Recognition,2016,53:229-237. [35]LI D,ZHANG H,LI T,et al.Hybrid missing value imputation algorithms using fuzzy c-means and vaguely quantified rough set[J].IEEE Transactions on Fuzzy Systems,2021,30(5):1396-1408. [36]HO J,JAIN A,ABBEEL P.Denoising diffusion probabilisticmodels[J].Advances in Neural Information Processing Systems,2020,33:6840-6851. [37]NICHOL A,DHARIWAL P.Improved denoising diffusionprobabilistic models[C]//International Conference on Machine Learning.PMLR,2021:8162-8171. [38]GAO Q,LI Z,ZHANG J,et al.CoreDiff:Contextual error-mo-dulated generalized diffusion model for low-dose CT denoising and generalization[J].arXiv:2304.01814,2023. [39]YUE J,FANG L,XIA S,et al.Dif-fusion:Towards high color fidelity in infrared and visible image fusion with diffusion models[J].IEEE Transactions on Image Processing,2023,32:5705-5720. [40]SONG J,MENG C,ERMON S.Denoising diffusion implicitmodels[J].arXiv:2010.02502,2020. [41]WANG Y,LIU H,FENG Y,et al.HeadDiff:Exploring Rotation Uncertainty with Diffusion Models for Head Pose Estimation[J].IEEE Transactions on Image Processing,2024,33:1868-1882. [42]GONG K,JOHNSON K,EL FAKHRI G,et al.PET image denoising based on denoising diffusion probabilistic model[J].European Journal of Nuclear Medicine and Molecular Imaging,2024,51(2):358-368. [43]DING Y,YU X,YANG Y,et al.RFNet:Region-aware fusion network for incomplete multi-modal brain tumor segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:3975-3984. [44]ULLAH Z,USMAN M JEON M,et al.Cascade multiscale residual attention cnns with adaptive roi for automatic brain tumor segmentation[J].Information sciences,2022,608:1541-1556. [45]FANG X,YAN P.Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction[J].IEEE Transactions on Medical Imaging,2020,39(11):3619-3629. |
[1] | SHAN Xinxin, LI Kai, WEN Ying. Medical Image Segmentation Network Integrating Full-scale Feature Fusion and RNN with Attention [J]. Computer Science, 2024, 51(5): 100-107. |
[2] | LUO Huilan, GUO Yuchen. Gaussian-bias Self-attention and Cross-attention Based Module for Medical Image Segmentation [J]. Computer Science, 2024, 51(11A): 240300071-9. |
[3] | JIANG Haotian, WANG Qizhi, HUANG Yanglin, ZHANG Yaqin andHU Kai. Medical Image Segmentation Based on Multi-scale Edge Guidance [J]. Computer Science, 2023, 50(11A): 220900059-7. |
[4] | ZHANG Fu-chang, ZHONG Guo-qiang, MAO Yu-xu. Neural Architecture Search for Light-weight Medical Image Segmentation Network [J]. Computer Science, 2022, 49(10): 183-190. |
[5] | YE Zhong-yu, WU Meng-lin. Choroidal Neovascularization Segmentation Combining Temporal Supervision and Attention Mechanism [J]. Computer Science, 2021, 48(8): 118-124. |
[6] | TANG Si-yuan, XING Jun-feng and YANG Min. New Method for Medical Image Segmentation Based on BP Neural Network [J]. Computer Science, 2017, 44(Z6): 240-243. |
[7] | ZHANG Hui, ZHU Jia-ming and TANG Wen-jie. Image Segmentation Algorithm Based on Clustering and Improved Double Level Set [J]. Computer Science, 2017, 44(Z6): 198-201. |
[8] | TANG Wen-jie, ZHU Jia-ming and ZHANG Hui. Segmentation Algorithm of Medical Images Based on Multi-resolution Double Level Set [J]. Computer Science, 2017, 44(Z11): 189-192. |
[9] | ZHANG Hui, ZHU Jia-ming, CHEN Jing and WU Jie. Level Set Medical Image Segmentation Method Combining Watershed Algorithm [J]. Computer Science, 2016, 43(Z11): 193-196. |
[10] | SHI Yong-gang, TAN Ji-shuang and LIU Zhi-wen. Renal Cortex Segmentation Using Graph Cuts and Level Sets [J]. Computer Science, 2016, 43(7): 290-293. |
[11] | LAN Hong. Interactive Medical Image Segmentation Algorithm Optimized by Multi-thresholds [J]. Computer Science, 2013, 40(9): 296-299. |
[12] | . Threshold-based Segmentation for 3D Medical Volumetric Images [J]. Computer Science, 2013, 40(1): 269-272. |
[13] | . Improved Medical Image Segmentation Algorithm Based on Laplacian Level Set [J]. Computer Science, 2012, 39(8): 278-280. |
[14] | . [J]. Computer Science, 2008, 35(10): 236-237. |
|