Computer Science ›› 2025, Vol. 52 ›› Issue (6): 264-273.doi: 10.11896/jsjkx.241200197
• Computer Graphics & Multimedia • Previous Articles Next Articles
ZHANG Xinyan1,2, TANG Zhenchao3,4, LI Yifu5, LIU Zhenyu1,2
CLC Number:
[1]SHI S,TANG Y,ZHAO Q,et al.Prevalence and risk of atrial fibrillation in China:A national cross-sectional epidemiological study [J].The Lancet regional health Western Pacific,2022,23:100439. [2]AMERICAN HEART ASSOCIATION.Living With AFibGuide[EB/OL].https://www.hear-t.org/en/health-topics/atrial-fibrillation. [3]KARIM R,HOUSDEN R J,BALASUBR-AMANIAM M,et al.Evaluation of current algorithms for segmentation of scar tissue from late Gadolinium enhancement cardiovascular magnetic resonance of the left atrium:an open-access grand challenge [J].Journal of Cardiovascular Magnetic Resonance,2013,15(1):105. [4]LEFEBVRE A L,YAMAMOTO C A P,SHADE J K,et al.LASSNet:A Four Steps Deep Neural Network for Left Atrial Segmentation and Scar Quantification [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation:First Challenge,LAScarQS 2022 Held in Conjunction with MICCAI 2022,Singapore,September 18,2022,Proceedings.2023:1-15. [5]LI L,WU F,YANG G,et al.Atrial scar quantification via multi-scale CNN in the graph-cuts framework [J].Medical Image Analysis,2020,60:101595. [6]LI L,ZIMMER V A,SCHNABEL J A,et al.AtrialJSQnet:a new framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information [J].Medical Image Analysis,2022,76:102303. [7]ZHOU S,WANG K,ZHOU G.Edge-Enhanced Feature Guided Joint Segmentation of Left Atrial and Scars in LGE MRI Images [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:93-105. [8]AREGA T W,BRICQ S,MERIAUDEAU F.Leveraging Uncertainty Estimates to Improve Segmentation Performance in Cardiac MR [C]//Proceedings of the Uncertainty for Safe Utilization of Machine Learning in Medical Imaging,and Perinatal Imaging,Placental and Preterm Image Analysis.2021:24-33. [9]MA J.Histogram Matching Augmentation for Domain Adaptation with Application to Multi-centre,Multi-vendor and Multi-disease Cardiac Image Segmentation [C]//Proceedings of the Statistical Atlases and Computational Models of the Heart M&Ms and EMIDEC Challenges.2021:177-186. [10]SU R,ZHANG D,LIU J,et al.MSU-Net:Multi-scale U-Net for 2D medical image segmentation [J].Frontiers inGenetics,2021,12:639930. [11]KHAN A,ALWAZZAN O,BENNING M,et al.Sequential Segmentation of the Left Atrium and Atrial Scars Using a Multi-scale Weight Sharing Network and Boundary-Based Processing [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:69-82. [12]LI F,LI W.Cross-Domain Segmentation of Left Atrium Basedon Multi-scale Decision Level Fusion [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:124-132. [13]ISENSEE F,JAEGER P F,KOHL S A A,et al.nnU-Net:a self-configuring method for deep learning-based biomedical image segmentation [J].Nature Methods,2021,18(2):203-211. [14]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [15]WOO S,PARK J,LEE J,et al.Cbam:Convolutional block attention module [C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:3-19. [16]PARK J,WOO S,LEE J,et al.BAM:Bottleneck AttentionModule [C]//Proceedings of the British Machine Vision Confe-rence.2018. [17]NG M,GUO F,BISWAS L,et al.Estimating Uncertainty inNeural Networks for Cardiac MRI Segmentation:A Benchmark Study [J].IEEE Transactions on Biomedical Engineering,2023,70(6):1955-1966. [18]SANDER J,VOS B D,WOLTERINK J M,et al.Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI [C]//Proceedings of the Medical imaging 2019:image Processing.2019:324-330. [19]YANG X,WANG N,WANG Y,et al.Combating Uncertainty with Novel Losses for Automatic Left Atrium Segmentation [C]//Proceedings of the Statistical Atlases and Computational Models of the Heart Atrial Segmentation and LV Quantification Challenges.2019:246-254. [20]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Proceedings of the Proceedings of the European Conference on Computer Vision (ECCV).2018:801-818. [21]OGBOMO-HARMITT S,GRZELAK J,QURESHI A,et al.TESSLA:Two-Stage Ensemble Scar Segmentation for the Left Atrium [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:106-114. [22]BEINART R,ABBARA S,BLUM A,et al.Left atrial wallthickness variability measured by CT scans in patients undergoing pulmonary vein isolation [J].Journal of Cardiovascular Electrophysiology,2011,22(11):1232-1236. [23]ZHANG X,YANG X,HUANG L,et al.Two Stage of Histogram Matching Augmentation for Domain Generalization:Application to Left Atrial Segmentation [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:60-68. [24]SHAPIRA D,AVIDAN S,HEL-OR Y.Multiple histogrammatching [C]//Proceedings of the 2013 IEEE International Conference on Image Processing.2013:2269-2273. [25]LI L,ZIMMER V A,SCHNABEL J A,et al.Medical imageanalysis on left atrial LGE MRI for atrial fibrillation studies:A review [J].MedicalImage Analysis,2022,77:102360. [26]LI L,ZIMMER V A,SCHNABEL J A,et al.AtrialGeneral:domain generalization for left atrial segmentation of multi-center LGE MRIs [C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).24th International Conference.2021:557-566. [27]YANIV Z,LOWEKAMP B C,JOHNSON H J,et al.SimpleITK image-analysis notebooks:a collaborative environment for education and reproducible research [J].Journal of Digital Imaging,2018,31(3):290-303. [28]LI L,ZIMMER V A,SCHNABEL J A,et al.Medical imageanalysis on left atrial LGE MRI for atrial fibrillation studies:A review [J].Medical Image Analysis,2022,77:102360. [29]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:Learning where to look for the pancreas [J].arXiv:1804.03999,2018. [30]DIAKOGIANNIS F I,WALDNER F,CACCETTA P,et al.ResUNet-a:A deep learning framework for semantic segmentation of remotely sensed data [J].ISPRS Journal of Photogrammetry Remote Sensing,2020,162:94-114. [31]WU M,DING W,YANG M,et al.Multi-depth boundary-aware left atrial scar segmentation network [C]//Proceedings of the Challenge on Left Atrial and Scar Quantification and Segmentation.2022:16-23. [32]WU J,JI W,FU H,et al.Medsegdiff-v2:Diffusion-based medical image segmentation with transformer [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:6030-6038. [33]ZHANG Y,MENG Y,ZHENG Y.Automatically segment the left atrium and scars from LGE-MRIs using a boundary-focused nnU-Net [C]//Proceedings of the Challenge on Left Atrial and Scar Quantification and Segmentation.2022:49-59. [34]AREGA T W,BRICQ S,MERIAUDEAU F.Using Polynomial Loss and Uncertainty Information for Robust Left Atrial and Scar Quantification and Segmentation [C]//Proceedings of the Left Atrial and Scar Quantification and Segmentation.2023:133-144. |
[1] | WANG Chanfei, YANG Jing, XU Yamei, HE Jiai. OFDM Index Modulation Signal Detection Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240900122-6. |
[2] | CHEN Shijia, YE Jianyuan, GONG Xuan, ZENG Kang, NI Pengcheng. Aircraft Landing Gear Safety Pin Detection Algorithm Based on Improved YOlOv5s [J]. Computer Science, 2025, 52(6A): 240400189-7. |
[3] | GAO Junyi, ZHANG Wei, LI Zelin. YOLO-BFEPS:Efficient Attention-enhanced Cross-scale YOLOv10 Fire Detection Model [J]. Computer Science, 2025, 52(6A): 240800134-9. |
[4] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
[5] | HUANG Hong, SU Han, MIN Peng. Small Target Detection Algorithm in UAV Images Integrating Multi-scale Features [J]. Computer Science, 2025, 52(6A): 240700097-5. |
[6] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[7] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
[8] | ZHOU Lei, SHI Huaifeng, YANG Kai, WANG Rui, LIU Chaofan. Intelligent Prediction of Network Traffic Based on Large Language Model [J]. Computer Science, 2025, 52(6A): 241100058-7. |
[9] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[10] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[11] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[12] | RAN Qin, RUAN Xiaoli, XU Jing, LI Shaobo, HU Bingqi. Function Prediction of Therapeutic Peptides with Multi-coded Neural Networks Based on Projected Gradient Descent [J]. Computer Science, 2025, 52(6A): 240800024-6. |
[13] | ZOU Ling, ZHU Lei, DENG Yangjun, ZHANG Hongyan. Source Recording Device Verification Forensics of Digital Speech Based on End-to-End DeepLearning [J]. Computer Science, 2025, 52(6A): 240800028-7. |
[14] | FAN Xing, ZHOU Xiaohang, ZHANG Ning. Review on Methods and Applications of Short Text Similarity Measurement in Social Media Platforms [J]. Computer Science, 2025, 52(6A): 240400206-8. |
[15] | YANG Jixiang, JIANG Huiping, WANG Sen, MA Xuan. Research Progress and Challenges in Forest Fire Risk Prediction [J]. Computer Science, 2025, 52(6A): 240400177-8. |
|