Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 241100144-9.doi: 10.11896/jsjkx.241100144
• Computer Software & Architecture • Previous Articles Next Articles
BAO Shenghong, YAO Youjian, LI Xiaoya, CHEN Wen
CLC Number:
[1]STEPHENS N,GROSEN J,SALLS C,et al.Driller:Augmen-ting fuzzing through selective symbolic execution[C]//Proceedings of the 2016 Network and Distributed System Security Symposium(NDSS).2016. [2]PENG H,SHOSHITAISHVILI Y,PAYER M.T-Fuzz:fuzzing by program transformation[C]//2018 IEEE Symposium on Security and Privacy(SP).IEEE,2018:697-710. [3]AGGARWAL A,JALOTE P.Integrating static and dynamic analysis for detecting vulnerabilities[C]//30th Annual International Computer Software and Applications Conference(COMPSAC’06).IEEE,2006,1:343-350. [4]CHAKRABORTY S,KRISHNA R,RAY B,et al.Deep Learning Based Vulnerability Detection:Are We There Yet?[J].IEEE Transaction on Software Engineering,2022,48(9):3280-3296. [5]LI Z,ZOU D,XU S,et al.Sysevr:A framework for using deep learning to detect software vulnerabilities[J].IEEE Transactions on Dependable and Secure Computing,2021,19(4):2244-2258. [6]PARK J,LEE H,RYU S.A survey of parametric static analysis[J].ACM Computing Surveys(CSUR),2021,54(7):1-37. [7]CHEN B,JIANG J,WANG X,et al.Debiased self-training for semi-supervised learning[J].Advances in Neural Information Processing Systems,2022,35:32424-32437. [8]XIE Q,DAI Z,HOVY E,et al.Unsupervised data augmentation for consistency training[J].Advances in neural information processing systems,2020,33:6256-6268. [9]OLIVER A,ODENA A,RAFFEL C A,et al.Realistic evaluation of deep semi-supervised learning algorithms[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:3239-3250. [10]HAMMOUDEH Z,LOWD D.Learning from positive and unlabeled data with arbitrary positive shift[J].Advances in Neural Information Processing Systems,2020,33:13088-13099. [11]RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [12]KINGMA D P,MOHAMED S,JIMENEZ REZENDE D,et al.Semi-supervised learning with deep generative models[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.2017:3581-3589. [13]CARON M,BOJANOWSKI P,JOULIN A,et al.Deep clustering for unsupervised learning of visual features[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:132-149. [14]KIRYO R,NIU G,DU PLESSIS M C,et al.Positive-unlabeled learning with non-negative risk estimator[C]//31st Conference on Neural Iformation Processing Systems.2017:1-11. [15]BEKKER J,ROBBERECHTS P,DAVIS J.Beyond the selected completely at random assumption for learning from positive and unlabeled data[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Springer International Publishing,2019:71-85. [16]JASKIE K,SPANIAS A.Positive unlabeled learning[M].Morgan & Claypool Publishers,2022. [17] YANG P,LI X L,MEI J P,et al.Positive-unlabeled learning for disease gene identification[J].Bioinformatics,2012,28(20):2640-2647. [18]YU H,ZHAI C X,HAN J.Text classification from positive and unlabeled documents[C]//Proceedings of the Twelfth International Conference on Information and Knowledge Management.2003:232-239. [19]LI W,GUO Q,ELKAN C.A positive and unlabeled learning algorithm for one-class classification of remote-sensing data[J].IEEE Transactions on Geoscience and Remote Sensing,2010,49(2):717-725. [20]ZHANG B,ZUO W.Learning from positive and unlabeled examples:A survey[C]//2008 International Symposiums on Information Processing.IEEE,2008:650-654. [21]LIANG C,ZHANG Y,SHI P,et al.Learning very fast decision tree from uncertain data streams with positive and unlabeled samples[J].Information Sciences,2012,213:50-67. [22]HE J,ZHANG Y,LI X,et al.Bayesian classifiers for positiveunlabeled learning[C]//International Conference on Web-Age Information Management.Berlin,Heidelberg:Springer Berlin Heidelberg,2011:81-93. [23]LI C,HUA X L.Towards positive unlabeled learning for parallel data mining:a random forest framework[C]//Advanced Data Mining and Applications:10th International Conference(ADMA 2014).Guilin,China,Springer International Publishing,2014:573-587. [24]ZHANG R,HUANG S,QI Z,et al.Combining static and dynamic analysis to discover software vulnerabilities[C]//2011 Fifth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing.IEEE,2011:175-181. [25]DE COMITÉ F,DENIS F,GILLERON R,et al.Positive and unlabeled examples help learning[C]//Algorithmic Learning Theory:10th International Conference(ALT’99).Tokyo,Japan,Springer Berlin Heidelberg,1999:219-230. [26]CHEN X,CHEN W,CHEN T,et al.Self-pu:Self boosted and calibrated positive-unlabeled training[C]//International Conference on Machine Learning.PMLR,2020:1510-1519. [27]MAGEE J F.Decision trees for decision making[M].Brighton,MA,USA:Harvard Business Review,1964. [28]WILTON J,KOAY A,KO R,et al.Positive-Unlabeled Learning using Random Forests via Recursive Greedy Risk Minimization[J].Advances in Neural Information Processing Systems,2022,35:24060-24071. [29]DONG X,YU Z,CAO W,et al.A survey on ensemble learning[J].Frontiers of Computer Science,2020,14:241-258. |
[1] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
[2] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
[3] | DU Yuanhua, CHEN Pan, ZHOU Nan, SHI Kaibo, CHEN Eryang, ZHANG Yuanpeng. Correntropy Based Multi-view Low-rank Matrix Factorization and Constraint Graph Learning for Multi-view Data Clustering [J]. Computer Science, 2025, 52(6A): 240900131-10. |
[4] | ZHANG Xuming, SHI Yaqing, HUANG Song, WANG Xingya, HU Jinchang, LU Jiangtao. Survey of Open-source Software Component Vulnerability Detection and Automatic RepairTechnology [J]. Computer Science, 2025, 52(6): 1-20. |
[5] | WANG Xiao, LI Guanxiong, LI Na, YUAN Dongfeng. Semi-supervised Learning Flow Field Prediction Method Based on Gaussian Mixture Discrimination [J]. Computer Science, 2025, 52(6): 88-95. |
[6] | WU You, WANG Jing, LI Peipei, HU Xuegang. Semi-supervised Partial Multi-label Feature Selection [J]. Computer Science, 2025, 52(4): 161-168. |
[7] | SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230. |
[8] | HAN Wei, JIANG Shujuan, ZHOU Wei. Patch Correctness Verification Method Based on CodeBERT and Stacking Ensemble Learning [J]. Computer Science, 2025, 52(1): 250-258. |
[9] | REN Jiadong, LI Shangyang, REN Rong, ZHANG Bing, WANG Qian. Web Access Control Vulnerability Detection Approach Based on Site Maps [J]. Computer Science, 2024, 51(9): 416-424. |
[10] | LU Xulin, LI Zhihua. IoT Device Recognition Method Combining Multimodal IoT Device Fingerprint and Ensemble Learning [J]. Computer Science, 2024, 51(9): 371-382. |
[11] | ZHUO Peiyan, ZHANG Yaona, LIU Wei, LIU Zijin, SONG You. CTGANBoost:Credit Fraud Detection Based on CTGAN and Boosting [J]. Computer Science, 2024, 51(6A): 230600199-7. |
[12] | LIANG Meiyan, FAN Yingying, WANG Lin. Fine-grained Colon Pathology Images Classification Based on Heterogeneous Ensemble Learningwith Multi-distance Measures [J]. Computer Science, 2024, 51(6A): 230400043-7. |
[13] | LI Xinrui, ZHANG Yanfang, KANG Xiaodong, LI Bo, HAN Junling. Intelligent Diagnosis of Brain Tumor with MRI Based on Ensemble Learning [J]. Computer Science, 2024, 51(6A): 230600043-7. |
[14] | KANG Wei, LI Lihui, WEN Yimin. Semi-supervised Classification of Data Stream with Concept Drift Based on Clustering Model Reuse [J]. Computer Science, 2024, 51(4): 124-131. |
[15] | DAI Wei, CHAI Jing, LIU Yajiao. Semi-supervised Learning Algorithm Based on Maximum Margin and Manifold Hypothesis [J]. Computer Science, 2024, 51(2): 259-267. |
|