Computer Science ›› 2025, Vol. 52 ›› Issue (8): 204-213.doi: 10.11896/jsjkx.240600057
• Computer Graphics & Multimedia • Previous Articles Next Articles
LIU Huayong, XU Minghui
CLC Number:
[1]ZHANG X Y,ZOU J H,HE K,et al.Accelerating very deep convolutional networks for classification and detection[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2016,38(10):1943-55. [2]LIU F X,ZHAO W B,WANG Z W,et al.IM3A:boosting deep neural network efficiency via in-memory addressing-assisted acceleration[C]//Proceedings of the 2021 on Great Lakes Symposium on VLSI.New York:ACM,2021:253-258. [3]JIANG Q Y,LI W J.Asymmetric deep supervised hashing[C]//Proceedings of the 32th AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2018:3342-3349. [4]SU S P,ZHANG C,HAN K,et al.Greedy hash:Towards fast optimization for accurate hash coding in CNN [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.Red Hook,NY:Curran Associates Inc.,2018:806-815. [5]CAO Y,LONG M S,LIU B,et al.Deep cauchy hashing for hamming space retrieval[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:1229-1237. [6]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [7]CHEN Y B,ZHANG S,LIU F X,et al.TransHash:transfor-mer-based hamming hashing for efficient image retrieval[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval.New York:ACM,2022:127-136. [8]LIU Z,LIN Y T,CAO Y,et al.Swin Transformer:hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway,NJ:IEEE Computer Society,2021:10012-10022. [9]MIAO Z,ZHAO X X,LI Y,et al.Deep supervised hash image retrieval method based on Swin Transformer[J].Journal of Hunan University(Natural Science Edition),2023,50(8):62-71. [10]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,60(6):84-90. [11]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [12]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [13]WANG W,YANG Y,WANG X,et al.Development of convolutional neural network and its application in image classification:A survey[J].Optical Engineering,2019,58(4):1. [14]GKOUNTAKOS K,SEMERTZIDIS T,PAPADOPOULOS GT,et al.A reliability object layer for deep hashing-based visual indexing[C]//International Conference on MultiMedia Mode-ling.Cham:Springer,2019:132-143. [15]LIONG V E,LU J W,WANG G,et al.Deep hashing for Compact binary codes learning[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2015:2475-2483. [16]ZHU H,LONG M S,WANG J M,et al. Deep hashing network for efficient similarity retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016:2415-2421. [17]LIU H M,WANG R P,SHAN S G,et al.Deep supervised hashing for fast image retrieval[J].International Journal of Computer Vision,2019,127(9):1217-1234. [18]CHENG S L,LAI H C,WANG L J,et al.A novel deep hashing method for fast image retrieval[J].The Visual Computer,2019,35(9):1255-1266. [19]FENG X J,CHENG Y W.Image retrieval based on deep convolutional neural networks and hash[J].Computer Engineering and Design,2020,41(3):670-675. [20]SHI L Q,WANG Y M.RAN and deep hashing for image retrieval[J].Electronic Design Engineering,2021,29(6):99-103,110. [21]ZHANG C Y,ZHU L,ZHANG S C,et al.TDHPPIR:an efficient deep hashing based privacy-preserving image retrieval method[J].Neurocomputing,2020,406:386-398. [22]ZHANG W Q,WU D Y,ZHOU Y,et al.Binary neural network hashing for image retrieval[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.ACM,2021:1318-1327. [23]YANG W J,WANG L J,CHENG S L,et al.Deep hash with improved dual attention for image retrieval[J].Information,2021,12(7):285-285. [24]WANGX Y.Research on image retrieval method based on deep hash[D].Taiyuan:North University of China,2023. [25]WANG W H,XIE E Z,LI X,et al.Pyramid vision transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of the IEEE & CVF International Conference on Computer Vision.Piscataway,NJ:IEEE,2021:568-578. [26]LI T,ZHANG Z,PEI L S,et al.HashFormer:vision transformerbased deep hashing for image retrieval[J].IEEE Signal Processing Letters,2022,29:827-831. [27]DUBEY S R,SINGH S K,CHU W T.Vision transformer hashing for image retrieval[C]//2022 IEEE International Confe-rence on Multimedia and Expo(ICME).IEEE,2022:1-6. [28]HE C,WEI H X.Image retrieval based on transformer andasymmetric learning strategy[J].Journal of Image and Graphi-cs,2023,28(2):535-544. [29]LI K C,WANG Y L,ZHANG J H,et al.Uniformer:unifying convolution and self-attention for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(10):12581-12600. [30]ZHANG Y L,LI K P,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision.2018:286-301. [31]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,2:6000-6010. [32]FAN L X,NG K W,JU C,et al.Deep Polarized Network for Supervised Learning of Accurate Binary Hashing Codes[C]//Proceedings of the 2020 International Joint Conference on Artificial Intelligence(IJCAI).2020:825-831. [33]KRIZHEVSKY A,HINTON G.Learning multiple layers of features from tiny images[D].Toronto:University of Toronto,2009. [34]CHUA T S,TANG J,HONG R,et al.NUS-WIDE:a real-world web image database from national university of singapore[C]//Proceedings of the ACM International Conference on Image and Video Retrieval.New York:ACM,2009:1-9. [35]CAO Z,LONG M,WANG J,et al.HashNet:deep learning to hash by continuation[C]//Proceedings of the IEEE InternationalConference on Computer Vision.IEEE,2017:5609-5618. [36]XIE Y Z,WEI R K,SONG J K,et al.Label-affinity self-adaptive central similarity hashing for image retrieval[J].IEEE Transactions on Multimedia,2023,25:9161-9174. |
[1] | XU Yongwei, REN Haopan, WANG Pengfei. Object Detection Algorithm Based on YOLOv8 Enhancement and Its Application Norms [J]. Computer Science, 2025, 52(7): 189-200. |
[2] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[3] | LIAO Junshuang, TAN Qinhong. DETR with Multi-granularity Spatial Attention and Spatial Prior Supervision [J]. Computer Science, 2024, 51(6): 239-246. |
[4] | GENG Huantong, LI Jiaxing, JIANG Jun, LIU Zhenyu, FAN Zichen. High-precision Real-time Semantic Segmentation Algorithm Architecture for Autonomous Driving [J]. Computer Science, 2024, 51(11): 174-181. |
[5] | LIU Chang, ZHU Yan. Context-rich Sarcasm Recognition Based on DPCNN and Multiple Learning Modes Loss [J]. Computer Science, 2023, 50(11A): 230200067-5. |
[6] | YANG Yue, FENG Tao, LIANG Hong, YANG Yang. Image Arbitrary Style Transfer via Criss-cross Attention [J]. Computer Science, 2022, 49(6A): 345-352. |
[7] | MA Wan-yi, ZHANG De-ping. Study on Human Pose Estimation Based on Multiscale Dual Attention [J]. Computer Science, 2022, 49(11A): 220100057-5. |
[8] | LI Tian-pei, CHEN Li. Retinal Vessel Segmentation Based on Dual Attention and Encoder-decoder Structure [J]. Computer Science, 2020, 47(5): 166-171. |
|