Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240600020-10.doi: 10.11896/jsjkx.240600020
• Intelligent Medical Engineering • Previous Articles Next Articles
CHEN Xianglong1,2, LI Haijun3
CLC Number:
[1]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Springer,2015:234-241. [2]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Springer,2018:3-11. [3]XIAO X,LIAN S,LUO Z,et al.Weighted res-unet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education(ITME).IEEE,2018:327-331. [4]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:Learning where to look for the pancreas[J].arXiv:1804.03999,2018. [5]LI X,CHEN H,QI X,et al.H-denseunet:hybrid densely con-nected unet for liver and tumor segmentation from ct volumes[J].IEEE Transactions on Medical Imaging,2018,37(12):2663-2674. [6]ALOM M Z,HASAN M,YAKOPCIC C,et al.Recurrent residual convolutional neural network based on u-net(r2unet) for medical image segmentation[J].arXiv:1802.06955,2018. [7]VALANARASU J M J,SINDAGI V A,HACIHALILOGLU I,et al.Kiu-net:Towards accurate segmentation of biomedical images using over-complete representations[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2020:363-373. [8]HUANG H,LIN L,TONG R,et al.Unet 3+:A full-scale connected unet for medical image segmentation[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:1055-1059. [9]WANG X,GIRSHICK R,GUPTA A,et al.Non-local neuralnetworks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7794-7803. [10]HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:603-612. [11]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[J].arXiv:2103.02907,2021. [12]WANG G T,LI W Q,ZULUAGA M A,et al.Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning[J].IEEE Transactions on Medical Imaging,2018,37(7):1562-1573. [13]LI Y,FAN Y.DeepSEED:3D Squeeze-and-Excitation Encoder-Decoder Convolutional Neural Networks for Pulmonary Nodule Detection[C]//IEEE 17th International Symposium on Biomedical Imaging(ISBI 2020).Iowa City,IA,USA,2020:1866-1869. [14]MEI J,CHENG M M,XU G,et al.SANet:A Slice-Aware Network for Pulmonary Nodule Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(8):4374-4387. [15]CELAYA A,ACTOR J A,MUTHUSIVARAJAN R,et al.PocketNet:A Smaller Neural Network for Medical Image Analysis[J].IEEE Transactions on Medical Imaging,2023,42(4):1172-1184. [16]ORTEGA-RUÍZ M A,KARABAĞ C,ROMAN-RANGEL E,et al.DRD-UNet,a UNet-Like Architecture for Multi-Class Breast Cancer Semantic Segmentation[J].IEEE Access,2024,12:40412-40424. [17]ARMAND T P T,BHATTACHARJEE S,CHOI H K,et al.Transformers Effectiveness in Medical Image Segmentation:A Comparative Analysis of UNet-Based Architectures[C]//International Conference on Artificial Intelligence in Information and Communication(ICAIIC 2024).IEEE,2024. [18]JIANG W,ZHI L,ZHANG S,et al.A Dual-Branch Framework With Prior Knowledge for Precise Segmentation of Lung Nodules in Challenging CT Scans[J].IEEE Journal of Biomedical and Health Informatics,2024,28(3):1540-1551. [19]NAGHNE R,KAZEMI A,MOGHADDASI H,et al.An Efficient Capsule-based Network for 2D Left Ventricle Segmentation in Echocardiography Images[C]//45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC 2023).Sydney,Australia,2023:1-4. [20]LING Y,WANG Y,DAI W,et al.MTANet:Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification[J].IEEE Transactions on Medical Imaging,2024,43(2):674-685. [21]MASOOD A,NASEEM U,RAZZAK I.Multi-Scale SwinTransformer Enabled Automatic Detection and Segmentation of Lung Metastases Using CT Images[C]//IEEE 20th International Symposium on Biomedical Imaging(ISBI 2023).Cartagena,Colombia,2023:1-5. [22]LIN A,CHEN B,XU J,et al.DS-TransUNet:Dual Swin Transformer U-Net for Medical Image Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-15. [23]JI Z L,ZHAO Z H,ZENG X Y,et al.ResDSda_U-Net:A Novel U-Net-Based Residual Network for Segmentation of Pulmonary Nodules in Lung CT Images[J].IEEE Access,2023,11:87775-87789. [24]TANG T,ZHANG R,LIN K,et al.SM-RNet:A Scale-Aware-Based Multiattention-Guided Reverse Network for Pulmonary Nodules Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-14. [25]ASHA V,BHAVANISHANKAR K.Lung Cancer Detection using CT Scans:Image Processing through Deep Learning-A Review[C]//8th International Conference on Communication and Electronics Systems(ICCES 2023).Coimbatore,India,2023:1203-1213. [26]ZANNAH R,BASHAR M,MUSHFIQ R B,et al.SemanticSegmentation on Panoramic Dental X-Ray Images Using U-Net Architectures[J].IEEE Access,2024,12:44598-44612. [27]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[J].arXiv:2103.14030,2021. [28]ZHOU X,ZHOU L,GONG S,et al.Swin Transformer Embedding Dual-Stream for Semantic Segmentation of Remote Sensing Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024,17:175-189. [29]LI P,WANG H,WANG Z,et al.Swin Routiformer:Moss Classification Algorithm Based on Swin Transformer With Bi-Level Routing Attention[J].IEEE Access,2024,12:53396-53407. [30]PAN S Y,LIU Y Q,HALEK S,et al.Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in Multiple Anatomical Locations[C]//IEEE 20th International Symposium on Biomedical Imaging(ISBI 2023).Cartagena,Colombia,2023:1-5. [31]PROME T A,JASIM TAHITI T.MobileNetV2 Based Cervical Cancer Classification Using Pap Smear Images[C]//International Conference on Artificial Intelligence,Computer,Data Sciences and Applications(ACDSA 2024).Victoria,Seychelles,2024:1-7. [32]XUE M,GU L.Surgical instrument segmentation method based on improved MobileNetV2 network[C]//6th International Symposium on Computer and Information Processing Technology(ISCIPT 2021).Changsha,China,2021:744-747. [33]HUANG G H,ZHU J W,LI J J,et al.Channel-AttentionU-Net:Channel Attention Mechanism for Semantic Segmentation of Esophagus and Esophageal Cancer[J].IEEE Access,2020,8:122798-122810. [34]QI L,QIN X,GAO F,et al.SAWU-Net:Spatial AttentionWeighted Unmixing Network for Hyperspectral Images[J].IEEE Geoscience and Remote Sensing Letters,2023,20:1-5. [35]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. [36]MING Q,XIAO X.Towards Accurate Medical Image Segmentation With Gradient-Optimized Dice Loss[J].IEEE Signal Processing Letters,2024,31:191-195. [37]HO Y,WOOKEY S.The Real-World-Weight Cross-EntropyLoss Function:Modeling the Costs of Mislabeling[J].IEEE Access,2020,8:4806-4813. [38]HAN F F,ZHANG G P,WANG H F,et al.A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database[C]//2013 IEEE International Conference on Medical Imaging Physics and Engineering.Shenyang,China,2013:14-18. [39]AHMED I,CHEHRI A,JEON G,et al.Automated Pulmonary Nodule Classification and Detection Using Deep Learning Architectures[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2023,20(4):2445-2456. [40]HUANG Y,TANG Z,CHEN D,et al.Batching Soft IoU forTraining Semantic Segmentation Networks[J].IEEE Signal Processing Letters,2020,27:66-70. [41]XU T,SUN X,DIAO W,et al.ASSD:Feature Aligned Single-Shot Detection for Multiscale Objects in Aerial Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-17. |
[1] | SHI Xincheng, WANG Baohui, YU Litao, DU Hui. Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages [J]. Computer Science, 2025, 52(6A): 240500119-9. |
[2] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[3] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[4] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[5] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[6] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[7] | HONG Yi, SHEN Shikai, SHE Yumei, YANG Bin, DAI Fei, WANG Jianxiao, ZHANG Liyi. Multivariate Time Series Prediction Based on Dynamic Graph Learning and Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240700047-8. |
[8] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[9] | ZHAO Chanchan, YANG Xingchen, SHI Bao, LYU Fei, LIU Libin. Optimization Strategy of Task Offloading Based on Meta Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240800050-8. |
[10] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[11] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
[12] | WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao. Human Target Detection Algorithm for Low-quality Laser Through-window Imaging [J]. Computer Science, 2025, 52(6A): 240600069-6. |
[13] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
[14] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[15] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
|