Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200124-6.doi: 10.11896/jsjkx.241200124
• Image Processing & Multimedia Technology • Previous Articles Next Articles
LUO Qifeng1, XIAO Xing1, WEN Chaofei1, CHI Mingmin2, PENG Bo3
CLC Number:
| [1]KIRILLOV A,MINTU E,RAVI N,et al.Segment anything[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:3992-4003. [2]CAO Y K,XU X H,ZHANG J N,et al.A Survey on VisualAnomaly Detection:Challenge,Approach,and Prospect [J].arXiv:2401.16402,2024. [3]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [4]SAEED M,EBRAHIMPOUR R.Mixture of experts:a literature survey [J].Artificial Intelligence Review,2014,42:275-293. [5]ZHOU Y Q,LEI T,LIU H X,et al.Mixture-of-experts with expert-choice routing [C]//Advances in Neural Information Processing Systems.2022:7103-7114. [6]RÜCKLÉ A,GEIGLE G,GLOCKNER M,et al.AdapterDrop:On the efficiency of adapters in transformers [J].arXiv:2010.11918,2020. [7]CHEN Z,DUAN Y,WANG W,et al.Vision transformer adapter for dense predictions [J].arXiv:2205.08534,2022. [8]SUNG Y L,CHO J,BANSAL M.V-Adapter:Parameter-effi-cient transfer learning for vision-and-language tasks [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:5227-5237. [9]CHAN C J,PANG G K H.Fabric defect detection by Fourier analysis [J].IEEE Transactions on Industry Applications,2000,36(5):1267-1276. [10]HAN Y J,YU H J.Fabric defect detection system using stacked convolutional denoising auto-encoder trained with synthetic defect data [J].Applied Sciences,2020,10(7):2511. [11]GHOSH A,GUHA T,BHAR R B,et al.Pattern classification of fabric defects using support vector machines [J].International Journal of Clothing Science and Technology,2011,23(2/3):142-151. [12]KATTENBORN T,LEITLOFF J,SCHIEFER F,et al.Review on Convolutional Neural Networks(CNN) in vegetation remote sensing [J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,173:24-49. [13]HE K,GKIOXARI G,DOLL?R P,et al.Mask R-CNN [C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2961-2969. [14]DAI J,LI Y,HE K,et al.R-FCN:Object detection via region-based fully convolutional networks [C]//Advances in Neural Information Processing Systems.2016. [15]VILLA M,DARDENNE G,NASAN M,et al.FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images [J].International Journal of Computer Assisted Radiology and Surgery,2018,13:1707-1716. [16]JI S P,SHEN Y Y,LU M,et al.Building Instance Change Detection from Large-Scale Aerial Images using Convolutional Neural Networks and Simulated Samples [J].Remote Sensing,2019,11(11):1343. [17]LIU R Y,KUFFER M,PERSELLO C.The Temporal Dynamics of Slums Employing a CNN-Based Change Detection Approach [J].Remote Sensing,2019,11:2844. [18]NEMOTO K,HAMAGUCHI R,SATO M,et al.Buildingchange detection via a combination of CNNs using only RGB aerial imageries [C]//Proceedings of the SPIE.2017. [19]SINDAGI V A,SRIVASTAVA S.Domain adaptation for automatic OLED panel defect detection using adaptive support vector data description [J].International Journal of Computer Vision,2017,122(2):193-211. [20]QIU K,TIAN L,WANG P.An effective framework of automated visual surface defect detection for metal parts [J].IEEE Sensors Journal,2021,21(18):20412-20420. [21]BHATTACHARYA G,MANDAL B,PUHAN N B.Interleaved deep artifacts aware attention mechanism for concrete structural defect classification [J].IEEE Transactions on Image Processing,2021,30:6957-6969. [22]ZENG Z,LIU B,FU J,et al.Reference-based defect detection network [J].IEEE Transactions on Image Processing,2021,30:6637-6647. [23]RAHUTOMO F,KITASUKA T,ARITSUGI M.Semantic cosine similarity [C]//The 7th International Student Conference on Advanced Science and Technology ICAST.2012. [24]SINGH A,HU R,GOSWAMI V,et al.FLAVA:A foundational language and vision alignment model [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:15638-15650. [25]LI X,ZHANG Z,TAN X,et al.PromptAD:Learning prompts with only normal samples for few-shot anomaly detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2024:16838-16848. [26]JEONG J,ZOU Y,KIM T,et al.WinCLIP:Zero-/few-shot anomaly classification and segmentation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:19606-19616. [27]HANLEY J A,MCNEIL B J.The meaning and use of the area under a receiver operating characteristic(ROC) curve [J].Radiology,1982,143(1):29-36. [28]FUJINO A,ISOZAKI H,SUZUKI J.Multi-label text categorization with model combination based on F1-score maximization [C]//Proceedings of the Third International Joint Conference on Natural Language Processing.2008. |
| [1] | JIANG Rui, FAN Shuwen, WANG Xiaoming, XU Youyun. Clustering Algorithm Based on Improved SOM Model [J]. Computer Science, 2025, 52(8): 162-170. |
| [2] | DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang. MTFuse:An Infrared and Visible Image Fusion Network Based on Mamba and Transformer [J]. Computer Science, 2025, 52(8): 188-194. |
| [3] | SU Shiyu, YU Jiong, LI Shu, JIU Shicheng. Cross-domain Graph Anomaly Detection Via Dual Classification and Reconstruction [J]. Computer Science, 2025, 52(8): 374-384. |
| [4] | GU Zhaojun, YANG Xueying, SUI He. Improved SVM Model for Industrial Control Anomaly Detection Based on InterferenceSample Distribution Optimization [J]. Computer Science, 2025, 52(7): 388-398. |
| [5] | WANG Yicheng, NING Tai, LIU Xinyu, LUO Ye. Position-aware Based Multi-modality Lung Cancer Survival Prediction Method [J]. Computer Science, 2025, 52(6A): 240500089-8. |
| [6] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
| [7] | ZHANG Hang, WEI Shoulin, YIN Jibin. TalentDepth:A Monocular Depth Estimation Model for Complex Weather Scenarios Based onMultiscale Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240900126-7. |
| [8] | YIN Wencui, XIE Ping, YE Chengxu, HAN Jiaxin, XIA Xing. Anomaly Detection of Multi-variable Time Series Data Based on Variational Graph Auto-encoders [J]. Computer Science, 2025, 52(6A): 240700124-8. |
| [9] | DU Yuanhua, CHEN Pan, ZHOU Nan, SHI Kaibo, CHEN Eryang, ZHANG Yuanpeng. Correntropy Based Multi-view Low-rank Matrix Factorization and Constraint Graph Learning for Multi-view Data Clustering [J]. Computer Science, 2025, 52(6A): 240900131-10. |
| [10] | BAO Shenghong, YAO Youjian, LI Xiaoya, CHEN Wen. Integrated PU Learning Method PUEVD and Its Application in Software Source CodeVulnerability Detection [J]. Computer Science, 2025, 52(6A): 241100144-9. |
| [11] | WANG Xiao, LI Guanxiong, LI Na, YUAN Dongfeng. Semi-supervised Learning Flow Field Prediction Method Based on Gaussian Mixture Discrimination [J]. Computer Science, 2025, 52(6): 88-95. |
| [12] | LIAO Sirui, HUANG Feihu, ZHAN Pengxiang, PENG Jian, ZHANG Linghao. DCDAD:Differentiated Context Dependency for Time Series Anomaly Detection Method [J]. Computer Science, 2025, 52(6): 106-117. |
| [13] | ZHANG Jiaxiang, PAN Min, ZHANG Rui. Study on EEG Emotion Recognition Method Based on Self-supervised Graph Network [J]. Computer Science, 2025, 52(5): 122-127. |
| [14] | AN Rui, LU Jin, YANG Jingjing. Deep Clustering Method Based on Dual-branch Wavelet Convolutional Autoencoder and DataAugmentation [J]. Computer Science, 2025, 52(4): 129-137. |
| [15] | WU You, WANG Jing, LI Peipei, HU Xuegang. Semi-supervised Partial Multi-label Feature Selection [J]. Computer Science, 2025, 52(4): 161-168. |
|
||