Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200033-9.doi: 10.11896/jsjkx.241200033
• Computer Software & Architecture • Previous Articles Next Articles
XIA Peng, ZHANG Yijun, QI Ji
CLC Number:
| [1]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,30:5998-6008. [2]KENTON J D M W C,TOUTANOVA L K.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of NAACL-HLT.Minneapolis,2019:4171-4186. [3]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Impro-ving language understanding by generative pretraining[EB/OL].(2018-06-11) [2024-06-11].https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. [4]CHANG Y,WANG X,WANG J,et al.A survey on evaluation of large language models[J].ACM Transactions on Intelligent Systems and Technology,2023,39:1-45. [5]RADFORD A,WU J,CHILD R,et al.Language models are unsupervised multitask learners[EB/OL].(2019-02-14) [2024-06-11].https://insightcivic.s3.us-east-1.amazonaws.com/language-models.pdf. [6]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. [7]ACHIAM J,ADLER S,AGARWAL S,et al.Gpt-4 technical re-port[EB/OL].(2024-03-04) [2024-06-11].https://cdn.openai.com/papers/gpt-4.pdf. [8]TOUVRON H,LAVRIL T,IZACARD G,et al.Llama:Openand efficient foundation language models[EB/OL].(2023-02-17) [2024-06-11].https://arxiv.org/abs/2302.13971. [9]BAI J,BAI S,CHU Y,et al.Qwen technical report[EB/OL].(2023-09-28) [2024-06-11].https://arxiv.org/abs/2309.16609. [10]ZENG A,LIU X,DU Z,et al.GLM-130B:An Open Bilingual Pretrained Model[C]//International Conference on Learning Representations(ICLR).Kigali Rwanda,2023. [11]BI X,CHEN D,CHEN G,et al.Deepseek llm:Scaling open-source language models with longtermism[EB/OL].(2024-01-05) [2024-06-11].https://arxiv.org/abs/2401.02954. [12]ROZIERE B,GEHRING J,GLOECKLE F,et al.Code llama:Open foundation models for code[EB/OL].(2024-01-31) [2024-06-11].https://arxiv.org/abs/2308.12950. [13]LOZHKOV A,LI R,ALLAL L B,et al.StarCoder 2 and TheStack v2:The Next Generation[EB/OL].(2024-02-29) [2024-06-11].https://arxiv.org/abs/2402.19173. [14]GUO D,ZHU Q,YANG D,et al.DeepSeek-Coder:When the Large Language Model Meets Programming-The Rise of Code Intelligence[EB/OL].(2024-01-26) [2024-06-11].https://arxiv.org/abs/2401.14196 [15]CHEN M,TWOREK J,JUN H,et al.Evaluating large language models trained on code[EB/OL].(2021-07-14) [2024-06-11].https://arxiv.org/abs/2107.03374. [16]AUSTIN J,ODENA A,NYE M,et al.Program synthesis with large language models[EB/OL].(2021-08-16) [2024-06-11].https://arxiv.org/abs/2108.07732 [17]DONG Y,DING J,JIANG X,et al.Codescore:Evaluating code generation by learning code execution[EB/OL].(2023-12-01) [2024-06-11].https://arxiv.org/abs/2301.09043 [18]WOOLDRIDGE M,JENNINGS N R.Intelligent agents:Theory and practice[J].The knowledge Engineering Review,1995,10(2):115-152. [19]PARK J S,O’BRIEN J,CAI C J,et al.Generative agents:Interactive simulacra of human behavior[C]//Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology.San Francisco,2023:1-22. [20]WEI J,WANG X,SCHUURMANS D,et al.Chain-of-thoughtprompting elicits reasoning in large language models[J].Advances in Neural Information Processing Systems,2022,35:24824-24837. [21]KOJIMA T,GU S S,REID M,et al.Large language models are zero-shot reasoners[J].Advances in Neural Information Processing Systems,2022,35:22199-22213. [22]SONG C H,WU J,WASHINGTON C,et al.Llm-planner:Few-shot grounded planning for embodied agents with large language models[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Paris,2023:2998-3009. [23]YAO S,ZHAO J,YU D,et al.ReAct:Synergizing Reasoningand Acting in Language Models[C]//International Conference on Learning Representations(ICLR).Kigali Rwanda,2023. [24]SHINN N,CASSANO F,GOPINATH A,et al.Reflexion:Language agents with verbal reinforcement learning[J].Advances in Neural Information Processing Systems,2024,36. [25]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. [26]WEI J,BOSMA M,ZHAO V,et al.Finetuned Language Models are Zero-Shot Learners[C]//International Conference on Lear-ning Representations(ICLR).2021. [27]LI G,HAMMOUD H,ITANI H,et al.Camel:Communicativeagents for “mind” exploration of large language model society[J].Advances in Neural Information Processing Systems,2023,36:51991-52008. [28]RUAN J,CHEN Y H,ZHANG B,et al.TPTU:Task Planning and Tool Usage of Large Language Model-based AI Agents[C]//NeurIPS 2023 Foundation Models for Decision Making Workshop.New Orleans,2023. [29] JIANG X,DONG Y,WANG L,et al.Self-planning code generation with large language model[EB/OL].(2024-05-31) [2024-06-11].https://arxiv.org/abs/2303.06689. [30]SCHICK T,JANE A Y,JIANG Z,et al.PEER:A Collaborative Language Model[C]//International Conference on Learning Representations(ICLR).2022. [31]WU Q,BANSAL G,ZHANG J,et al.Autogen:Enabling next-gen LLM applications via multi-agent conversation framework[EB/OL].(2023-10-03) [2024-06-11].https://arxiv.org/abs/2308.08155. [32]HONG S,ZHUGE M,CHEN J,et al.MetaGPT:Meta Pro-gramming for Multi-Agent Collaborative Framework[C]//International Conference on Learning Representations(ICLR).Vienna,2024. |
| [1] | CAI Qihang, XU Bin, DONG Xiaodi. Knowledge Graph Completion Model Using Semantically Enhanced Prompts and Structural Information [J]. Computer Science, 2025, 52(9): 282-293. |
| [2] | ZHONG Boyang, RUAN Tong, ZHANG Weiyan, LIU Jingping. Collaboration of Large and Small Language Models with Iterative Reflection Framework for Clinical Note Summarization [J]. Computer Science, 2025, 52(9): 294-302. |
| [3] | CHENG Zhangtao, HUANG Haoran, XUE He, LIU Leyuan, ZHONG Ting, ZHOU Fan. Event Causality Identification Model Based on Prompt Learning and Hypergraph [J]. Computer Science, 2025, 52(9): 303-312. |
| [4] | LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211. |
| [5] | WANG Limei, HAN Linrui, DU Zuwei, ZHENG Ri, SHI Jianzhong, LIU Yiqun. Privacy Policy Compliance Detection Method for Mobile Application Based on Large LanguageModel [J]. Computer Science, 2025, 52(8): 1-16. |
| [6] | LIU Le, XIAO Rong, YANG Xiao. Application of Decoupled Knowledge Distillation Method in Document-level RelationExtraction [J]. Computer Science, 2025, 52(8): 277-287. |
| [7] | WANG Dongsheng. Multi-defendant Legal Judgment Prediction with Multi-turn LLM and Criminal Knowledge Graph [J]. Computer Science, 2025, 52(8): 308-316. |
| [8] | ZHANG Yongliang, LI Ziwen, XU Jiahao, JIANG Yuchen, CUI Ying. Congestion-aware and Cached Communication for Multi-agent Pathfinding [J]. Computer Science, 2025, 52(8): 317-325. |
| [9] | WANG Dongyu, MO Ran, ZHAN Wenjing, JIANG Yingjie. Analysis of the Code Quality of Code Automatic Generation Tool Github Copilot [J]. Computer Science, 2025, 52(7): 37-49. |
| [10] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
| [11] | LI Maolin, LIN Jiajie, YANG Zhenguo. Confidence-guided Prompt Learning for Multimodal Aspect-level Sentiment Analysis [J]. Computer Science, 2025, 52(7): 241-247. |
| [12] | CHEN Jinyin, XI Changkun, ZHENG Haibin, GAO Ming, ZHANG Tianxin. Survey of Security Research on Multimodal Large Language Models [J]. Computer Science, 2025, 52(7): 315-341. |
| [13] | ZHAO Zheyu, WANG Zhongqing, WANG Hongling. Commodity Attribute Classification Method Based on Dual Pre-training [J]. Computer Science, 2025, 52(6A): 240500127-8. |
| [14] | TU Ji, XIAO Wendong, TU Wenji, LI Lijian. Application of Large Language Models in Medical Education:Current Situation,Challenges and Future [J]. Computer Science, 2025, 52(6A): 240400121-6. |
| [15] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
|
||