Computer Science ›› 2026, Vol. 53 ›› Issue (1): 173-179.doi: 10.11896/jsjkx.250300009
• Computer Graphics & Multimedia • Previous Articles Next Articles
LI Ang, ZHANG Jieyuan, LIU Xunyun
CLC Number:
| [1]ZHU L,WANG X,KE Z,et al.BiFormer:vision transformerwith bi-level routing attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2023:10323-10333. [2]JIANG L,YUAN B,DU J,et al.MFFSODNet:Multi-Scale Feature Fusion Small Object Detection Network for UAV Aerial Images[J].IEEE Transactions on Instrumentation and Mea-surement,2024,73:1-14. [3]ZHAO J,ZHANG B,WANG G,et al.Spectral CamouflageCharacteristics and Recognition Ability of Targets Based on Vi-sible/Near-Infrared Hyperspectral Images[J].Photonics,2022,9:957-957. [4]DU W C,YU H,ZENG X J,et al.High resolution single-photon imaging for recognition of camouflaged target[C]//Seventh Symposium on Novel Photoelectronic Detection Technology and Applications.2021. [5]ANJAR W,DENI S R,SILFIA A,et al.Combination ofSobel+Prewitt Edge Detection Method with Roberts+Canny on Passion Flower Image Identification[J].Journal of Physics:Confe-rence Series,2021,1933(1):012037. [6]OTSU N.A Threshold Selection Method from Gray-Level Histograms[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66. [7]KONG L,DONG J,GE J,et al.Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5886-5895. [8]YANG F,ZHAI Q,LI X,et al.Uncertainty-guided transformer reasoning for camouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4146-4155. [9]ZHAO J X,LIU J J,FAN D P,et al.Egnet:Edge guidance network for salient object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:8779-8788. [10]WANG S,XU Y X,ZENG D W,et al.Deep learning-based spec-tral reconstruction in camouflaged target detection[J].International Journal of Applied Earth Observation and Geoinformation,2024,126:103645. [11]DEEPTI Y,KUMAR M A,CHANDRA K T,et al.Detectionand Identification of Camouflaged Targets using Hyperspectral and LiDAR data[J].Defence Science Journal,2018,68(6):540-540. [12]FAND P,JI G P,ZHOU T,et al.Pranet:Parallel reverse attention network for polyp segmentation[C]//International Confe-rence on Medical Image Computing and Computer-assisted Intervention.2020:263-273. [13]MEI H,JI G P,WEI Z,et al.Camouflaged object segmentation with distraction mining[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:8772-8781. [14]ZHAO Z,BAKAR A B E,RAZAK A B N,et al.Corrosionimage classification method based on EfficientNetV2[J].He-liyon,2024,10(17):e36754. [15]ZHONG Y J,BO L,LYU T,et al.Detecting Camouflaged Object in Frequency Domain[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:4504-4513. [16]LIU M Z,DI X G.Extraordinary MHNet:Military high-levelcamouflage object detection network and dataset[J].Neurocomputing,2023,549:126446. [17]ZHAI Q,LI X,YANG F,et al.Mutual graph learning for cam-ouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:12997-13007. [18]LYU Y Q,ZHANG J,DAI Y C,et al.Simultaneously localize,segment and rank the camouflaged objects[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:11591-11601. [19]LI A X,ZHANG J,LYU Y Q,et al.Uncertainty-aware joint salient object and camouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10071-10081. [20]FAN D P,JI G P,CHENG M M,et al.Concealed object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(10):6024-6042. [21]HUANG Z,DAI H,XIANG T Z,et al.Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5557-5566. [22]FAN D P,CHENG M M,LIU Y,et al.Structure-measure:A new way to evaluate foreground maps[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:4548-4557. [23]JUTTEN J R,HARRISON J,KJOE M L R P,et al.A novel cognitive-functional composite measure to detect changes in early Alzheimer’s disease:Test-retest reliability and feasibility[J].Alzheimer’s & Dementia:Diagnosis,Assessment & Disease Monitoring,2018,10:153-160. [24]SINGHAL A,BEDI P.USteg-DSE:Universal quantitativeSteganalysis framework using Densenet merged with Squeeze &Excitation net[J].Signal Processing:Image Communication,2024,128:117171-117171. [25]DICE L R.Measures of the amount ofecologic association between species[J].Ecology,2023,26:297-302. |
| [1] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [2] | HU Huijuan, QIN Yifeng, XU Heand LI Peng. An Improved YOLOv8 Object Detection Algorithm for UAV Aerial Images [J]. Computer Science, 2025, 52(4): 202-211. |
| [3] | LIU Xingpeng, XUE Yiming, LIN Yuyang, LI Yan, PENG Wanli. Lightweight Image Super-resolution Reconstruction Based on Feature Similarity Analysis [J]. Computer Science, 2025, 52(11A): 250100057-8. |
| [4] | HUO Xingxing, HU Ruimin, LI Yixin. Early-stage Fatigue Detection Based on Frequency Domain Information of Eye Features [J]. Computer Science, 2024, 51(6): 247-255. |
| [5] | YU Yongxin, JI Ke, GAO Yuan, CHEN Zhenxiang, MA Kun, ZHAO Xiaofan. Multi-source Heterogeneous Data Progressive Fusion for Fake News Detection [J]. Computer Science, 2024, 51(11): 30-38. |
| [6] | WANG Jinwei, ZENG Kehui, ZHANG Jiawei, LUO Xiangyang, MA Bin. GAN-generated Face Detection Based on Space-Frequency Convolutional Neural Network [J]. Computer Science, 2023, 50(6): 216-224. |
| [7] | HUO Huaqi, LU Lu. Scene Text Recognition Based on Feature Fusion in Space Domain and Frequency Domain [J]. Computer Science, 2023, 50(11A): 230300101-8. |
| [8] | MA Xin, JI Lixin, LI Shaomei. Forgery Face Detection Based on Multi-scale Transformer Fusing Multi-domain Information [J]. Computer Science, 2023, 50(10): 112-118. |
| [9] | YIN Wen-bing, GAO Ge, ZENG Bang, WANG Xiao, CHEN Yi. Speech Enhancement Based on Time-Frequency Domain GAN [J]. Computer Science, 2022, 49(6): 187-192. |
| [10] | YANG Xiao-qin, LIU Guo-jun, GUO Jian-hui, MA Wen-tao. Full Reference Color Image Quality Assessment Method Based on Spatial and Frequency Domain Joint Features with Random Forest [J]. Computer Science, 2021, 48(8): 99-105. |
| [11] | CHEN Xiao-wen, LIU Guang-shuai, LIU Wang-hua, LI Xu-rui. Blurred Image Recognition Based on LoG Edge Detection and Enhanced Local Phase Quantization [J]. Computer Science, 2020, 47(12): 197-204. |
| [12] | LI Xing-guo, REN Yi-mei, TIAN Jing, TANG Jing-qi. Application of SFRA Method in AC Servo System [J]. Computer Science, 2020, 47(11A): 628-631. |
| [13] | LIU Jia-cun, ZHAO Gui-yan, MEI Qi-xiang. Study of Optimal Learning Law and Simplified Learning Law of Iterative Learning Control in Frequency Domain [J]. Computer Science, 2019, 46(2): 327-332. |
| [14] | LIANG Yan-hui, LI Guo-dong, WANG Ai-yan. Frequency Domain Adaptive Image Encryption Algorithm Based on Fractional Order Chen Hyperchaos [J]. Computer Science, 2019, 46(11A): 488-492. |
| [15] | YUAN Xiao-yan, WANG An-zhi, WANG Ming-hui. Saliency Object Detection Algorithm Integrating Focusness Feature of Frequency Domain Information [J]. Computer Science, 2018, 45(10): 261-266. |
|
||