Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 250100057-8.doi: 10.11896/jsjkx.250100057
• Image Processing & Multimedia Technology • Previous Articles Next Articles
LIU Xingpeng1, XUE Yiming1, LIN Yuyang1, LI Yan2, PENG Wanli1
CLC Number:
| [1]HUANG Y,SHAO L,FRANGI A F.Simultaneous super-resolution and cross-modality synthesis of 3D medical im-ages using weakly-supervised joint convolutional sparse coding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE Computer Society Press,2017:6070-6079. [2]ZHANG J,LEI J,XIE W,et al.SuperYOLO:Super resolutionassisted object detection in multimodal remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-15. [3]RASTI P,UIBOUPIN T,ESCALERA S,et al.ConvolutionalNeural Network Super Resolution for Face Recognition in Surveil-lance Monitoring[C]//Proceedings of the 9th International Conference on Articulated Motion and Deformable Objects.Palma de Mallorca,Spain:Springer,2016:175-184. [4]WANG Z H,CHEN J,HOI S C H.Deep Learning for Image Super-Resolution:A Survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(10):3365-3387. [5]KIM J,LEE J K,LEE K M.Accurate image super-resolutionusing very deep convolutional networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,USA:IEEE Computer Society Press,2016:1646-1654. [6]TONG T,LI G,LIU X,et al.Image super-resolution usingdense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Venice,Italy:IEEE Computer Society Press,2017:4809-4817. [7]LEDIG C,THEIS L,HUSZÁR F,et al.Photo-realistic singleimage super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE Computer Society Press,2017:105-114. [8]LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Honolulu,HI,USA:IEEE Computer Society Press,2017:1132-1140. [9]ZHANG Y L,LI K P,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision.Munich,Germany:Springer,2018:294-310. [10]WANG X,YU K,WU S,et al.ESRGAN:Enhanced Super-Resolution Generative Adversarial Networks[C]//Proceedings of the European Conference on Computer Vision Workshops.Munich,Germany:Springer,2018:63-79. [11]LIANG J,CAO J,SUN G,et al.SwinIR:Image RestorationUsing Swin Transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.Montreal,QC,Canada:IEEE Computer Society Press,2021:1833-1844. [12]CHEN X Y,WANG X T,ZHOU J T,et al.Activating MorePixels in Image Super-Resolution Transformer[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada:IEEE Computer Society Press,2023:22367-22377. [13]CHEN Z,ZHANG Y,GU J,et al.Recursive generalizationtransformer for image super-resolution[EB/OL].https://doi.org/10.48550/arXiv.2303.06373. [14]CHEN Z,ZHANG Y,GU J,et al.Cross Aggregation Transformer for Image Restoration[EB/OL].[2024-07-09].https://arxiv.org/pdf/2211.13654.pdf. [15]LI Y W,ZHANG Y L,TIMOFTE R,et al.NTIRE 2023 Challenge on Efficient Super- Resolution:Methods and Results[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Vancouver,BC,Canada:IEEE Computer Society Press,2023:1922-1960. [16]CORINNA C,MEHRYAR M,AFSHIN R.Algorithms forlearning kernels based on centered alignment[J].Journal of Machine Learning Research,2012,13:795-828. [17]SIMON K,MOHAMMAD N,HONGLAK L,et al.Similarity of neural network representations revisited[C]//Proceedings of the 36th International Conference on Machine Learning.Long Beach,California,USA:PMLR,2019:3519-3529. [18]RAGHU M,UNTERTHINER T,KORNBLITH S,et al.Dovision transformers see like convolutional neural networks?[C]//Proceedings of Advances in Neural Information Proces-sing Systems.virtual:NeurIPS,2021:12116-12128. [19]SUVOROV R,LOGACHEVA E,MASHIKHIN A,et al.Resolution-robust Large Mask Inpainting with Fourier Convolutions[C]//Proceedings of the Winter Conference on Applications of Computer Vision.Waikoloa,HI,USA:IEEE,2022:3172-3182. [20]ZHANG D F,HUANG F Y,LIU S Z,et al.SwinFIR:Revisiting the swinir with fast fourier convolution and improved training for image super-resolution[J].arXiv:2208.11247,2023. [21]KONG L S,DONG J X,GE J J,et al.Efficient Frequency Domain-based Transformers for High-Quality Image Deblurring[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada:IEEE,2023:5886-5895. [22]CUI Y,KNOLL A.Dual-domain strip attention for image restoration[J].Neural Networks,2024,171:429-439. [23]HUI Z,WANG X,GAO X.Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:723-731. [24]HUI Z,GAO X B,YANG Y C,et al.Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia.Nice,France:ACM,2019:2024-2032. [25]LIU J,TANG J,WU G.Residual Feature Distillation Network for Lightweight Image Super-Resolution[C]//Proceedings of the European Conference on Computer Vision.Glasgow,UK:Springer,2020:41-55. [26]LI Z,LIU Y,CHEN X,et al.Blueprint Separable Residual Network for Efficient Image Super-Resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.New Orleans,LA,USA:IEEE Computer Society Press,2022:833-843. [27]ZHOU Y P,LI Z,GUO C L,et al.SRFormer:Permuted Self-Attention for Single Image Super-Resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition.Paris,France:IEEE,2023:12734-12745. [28]WANG Y,LIU Y,ZHAO S,et al.CAMixerSR:Only DetailsNeed More “Attention”[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,USA:IEEE,2024:25837-25846. [29]ZHANG A,REN W,LIU Y,et al.Lightweight image super-resolution with superpixel token interaction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition.Paris,France:IEEE,2023:12682-12691. [30]CHEN J,KAO S H,HE H,et al.Run,Don’t Walk:ChasingHigher FLOPS for Faster Neural Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver,BC,Canada:IEEE,2023:12021-12031. [31]GAO G,WANG Z,LI J,et al.Lightweight Bimodal Network for Single-Image Super-Resolution via Symmetric CNN and Recursive Transformer[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.Vienna,Aus-tria:IJCAI,2022:913-919. [32]ZHANG X D,ZENG H,GUO S,et al.Efficient Long-Range Attention Network for Image Super-resolution[C]//Proceedings of the 17th European Conference on Computer Vision.Tel Aviv,Israel:Springer,2022:649-667. [33]GU J J,DONG C.Interpreting Super-Resolution Networks with Local Attribution Maps[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville,TN,USA:IEEE Computer Society Press,2021:9195-9204. [34]ZHAO H Y,KONG X T,HE J G,et al.Efficient Image Super-Resolution Using Pixel Attention[C]//Proceedings of the European Conference on Computer Vision.Glasgow,UK:Springer,2020:56-72. [35]HU J F,GU JJ,YU S Y,et al.Interpreting Low-level Vision Models with Causal Effect Maps[EB/OL].(2024-09-18)[2025-01-05].https://doi.org/10.48550/arXiv.2407.19789. |
| [1] | ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169. |
| [2] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
| [3] | XU Hanzhi, LI Jiaying, LIANG Yudong, WEI Wei. Research on Depth Image Super-resolution Algorithm for High and Low Frequency Feature Modulation Fusion Guided by Color Images [J]. Computer Science, 2025, 52(6): 228-238. |
| [4] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
| [5] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
| [6] | HUO Xingxing, HU Ruimin, LI Yixin. Early-stage Fatigue Detection Based on Frequency Domain Information of Eye Features [J]. Computer Science, 2024, 51(6): 247-255. |
| [7] | YU Yongxin, JI Ke, GAO Yuan, CHEN Zhenxiang, MA Kun, ZHAO Xiaofan. Multi-source Heterogeneous Data Progressive Fusion for Fake News Detection [J]. Computer Science, 2024, 51(11): 30-38. |
| [8] | LIU Yubo, GUO Bin, MA Ke, QIU Chen, LIU Sicong. Design of Visual Context-driven Interactive Bot System [J]. Computer Science, 2023, 50(9): 260-268. |
| [9] | WANG Jinwei, ZENG Kehui, ZHANG Jiawei, LUO Xiangyang, MA Bin. GAN-generated Face Detection Based on Space-Frequency Convolutional Neural Network [J]. Computer Science, 2023, 50(6): 216-224. |
| [10] | HUO Huaqi, LU Lu. Scene Text Recognition Based on Feature Fusion in Space Domain and Frequency Domain [J]. Computer Science, 2023, 50(11A): 230300101-8. |
| [11] | MA Xin, JI Lixin, LI Shaomei. Forgery Face Detection Based on Multi-scale Transformer Fusing Multi-domain Information [J]. Computer Science, 2023, 50(10): 112-118. |
| [12] | YIN Wen-bing, GAO Ge, ZENG Bang, WANG Xiao, CHEN Yi. Speech Enhancement Based on Time-Frequency Domain GAN [J]. Computer Science, 2022, 49(6): 187-192. |
| [13] | DAI Xiao-lu, WANG Ting-hua, ZHOU Hui-ying. Fuzzy Multiple Kernel Support Vector Machine Based on Weighted Mahalanobis Distance [J]. Computer Science, 2022, 49(11A): 210800216-5. |
| [14] | YANG Xiao-qin, LIU Guo-jun, GUO Jian-hui, MA Wen-tao. Full Reference Color Image Quality Assessment Method Based on Spatial and Frequency Domain Joint Features with Random Forest [J]. Computer Science, 2021, 48(8): 99-105. |
| [15] | CHEN Hao-nan, LEI Yin-jie, WANG Hao. Lightweight Lane Detection Model Based on Row-column Decoupled Sampling [J]. Computer Science, 2021, 48(11A): 416-419. |
|
||