计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 148-152.doi: 10.11896/JsJkx.190700046

• 计算机图形学 & 多媒体 • 上一篇    下一篇

深度学习在光声成像中的应用现状

孙正, 王新宇   

  1. 华北电力大学电子与通信工程系 河北 保定 071003
  • 发布日期:2020-07-07
  • 通讯作者: 孙正(sunzheng_tJu@163.com)
  • 基金资助:
    国家自然科学基金(61372042);中央高校基本科研业务费专项资金(2014ZD31)

Application of Deep Learning in Photoacoustic Imaging

SUN Zheng and WANG Xin-yu   

  1. Department of Electronic and Communication Engineering,North China Electric Power University,Baoding,Hebei 071003,China
  • Published:2020-07-07
  • About author:SUN Zheng, born in 1977, Ph.D, professor.Her main research interests include biomedical imaging and signal proces-sing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61372042) and Fundamental Research Funds for the Central Universities of Ministry of Education of China (2014AD31).

摘要: 光声成像(Photoacoustic Imaging,PAI)是一种多物理场耦合的无创生物医学功能成像技术,它将纯光学成像的高对比度与超声成像的高空间分辨率相结合,可同时获得生物组织的结构和功能成分信息。近年来,随着深度学习算法在医学图像处理中的广泛应用,基于深度学习的光声成像算法也成为该领域的研究热点。对深度学习在PAI图像重建中的应用现状进行综述,归纳和总结现有的算法,分析目前存在的问题,并展望未来可能的发展趋势。

关键词: 光声成像, 深度学习, 卷积神经网络, 图像重建, 有限角度扫描

Abstract: Photoacoustic imaging (PAI) is a multi-physics coupled non-invasive biomedical functional imaging technology.It combines the high contrast of pure optical imaging with the high spatial resolution of ultrasonic imaging,and can obtain the morpho-logy and functional components information of target tissues at the same time.In recent years,deep learning (DL) has been widely applied in medical image processing.The PAI imaging algorithms based on DL have attracted more and more attention of researchers.This paper reviewed the current application of DL in PAI image reconstruction,summarized the existing algorithms,analyzed their limits and forecasted the possible improvements in the future.

Key words: Photoacoustic imaging, Deep learning, Convolutional neural network, Image reconstruction, Limited-angle scanning

中图分类号: 

  • TP391.4
[1] YAO J,WANG LV.Recent progress in photoacoustic molecular imaging.Current Opinion in Chemical Biology,2018,45:104-112.
[2] POUDEL J,LOU Y,ANASTASIO M A.A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography.doi:10.1088/1361-6560/ab2017.
[3] BU S,YAMAKAWAY M,SHIINA T.Interpolation method for model-based 3-D planar photoacoustic tomography reconstruction//MBE,医用?生体工学研究会.2011:139-142.
[4] SYED TA,KRISHNAN VP,SIVASWAMY J.Numerical inversion of circular arc Radon transform.IEEE Transactions on Computational Imaging,2016,2(4):540-549.
[5] WANG J,WANG Y.An Efficient compensation method for limited-view photoacoustic imaging reconstruction based on Gerchberg-Papoulis extrapolation.Applied Sciences,2017,7(5):505.
[6] SUNNEGRDH J,DANIELSSON P E.Regularized iterative weighted filtered backproJection for helical cone-beam CT.Medical Physics,2008,35(9):4173-4185.
[7] ANTHOLZER S,SCHWAB J,BAUER-MARSCHALLINGER J,et al.NETT regularization for compressed sensing photoacoustic tomography//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2019.2019:108783B.
[8] SYED T A,KRISHNAN V P,SIVASWAMY J.Numerical inversion of circular arc radon transform .IEEE Transactions on Computational Imaging,2017,2(4):540-549.
[9] GUO W.Research on Reconstruction Algorithms of CT with Incomplete ProJection Data .Changshun:Jilin University,2011.
[10] SU B L,ZHANG Y H,PENG L H,et al.Simultaneous iterative reconstruction technique for electrical capacitance tomography .Journal of Tsinghua University(Science and Technology),2000(9):90-92.
[11] CHEN X,HU H L,GAO X X,et al.Comparison of Algebraic Reconstruction Technique and Simultaneous Iterative Reconstruction Technique in Electrical Capacitance Tomography Image Reconstruction .Journal of Xi’an Jiaotong University,2011,45(4):25-29.
[12] YANG D W,XING D,ZHAO X,et al.A combined reconstruction algorithm for limited-view multi-element photoacoustic imaging .Chinese Physics Letters,2010,27(5):144-147.
[13] CHAUDHARY G,ROUMELIOTIS M,CARSON J J L,et al.Comparison of reconstruction algorithms for sparse-array detection photo-acoustic tomography //Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing.2010,7564:756434.
[14] WANG Q,WU Y N.New Analytical Solution to Extrapolation Problem for Band-Limited Signals .Journal of Electronics and Information Technology,1999,21(6):825-828.
[15] LIU X Y,PENG D,GUO W,et al.Compressed sensing photoacoustic imaging based on fast alternating direction algorithm .International Journal of Biomedical Imaging,2012,2012:206-214.
[16] VASWANI N,LU W.Modified-CS:modifying compressive sensing for problems with partially known support .IEEE Transactions on Signal Processing,2010,58(9):4595-4607.
[17] MENG J,WANG LV,YING L,et al.Compressed-sensing photoacoustic computed tomography in vivo with partially known support .Medical & Biological Imaging.2012,20(15):16510-16523.
[18] LIANG D,ZHANG H F,YING L.Compressed-sensing photoacoustic imaging based on random optical illumination .International Journal of Functional Informatics & Personalised Medicine,2009,2(4):394-406.
[19] ARRIDGE S,BEARD P,BETCKE M,et al.Accelerated high-resolution photoacoustic tomography via compressed sensing .Physics in Medicine & Biology,2016,61(24):8908.
[20] MENG J,JIANG Z,WANG LV,et al.High-speed,sparse-sampling three-dimensional photoacoustic computed tomography in vivo based on principal component analysis.Journal of Biomedical Lptics,2016,21(7):076007.
[21] LITJENS G,KOOI T,BEJNORDI B E,et al.A survey on deep learning in medical image analysis.Medical Image Analysis,2017,42(9):60-88.
[22] WANG G,YE J C,MUELLER K,et al.Image reconstruction is a new frontier of machine learning.IEEE Transactions on Medical Imaging,2018,37(6):1289-1296.
[23] LUCAS A,ILIADIS M,MOLINA R,et al.Using deep neural networks for inverse problems in imaging:beyond analytical methods.IEEE Signal Processing Magazine,2018,35(1):20-36.
[24] HALTMEIER M,ANTHOLZER S,SCHWAB J,et al.Photoacoustic image reconstruction via deep learning//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2018.2018:104944U.
[25] KELLY B,MATTHEWS T P,ANASTASIO M A.Deep lear-ning-guided image reconstruction from incomplete data//Proceedings of 31st Annual Conference on Neural Information Processing Systems (NIPS 2017).Long Beach,CA,USA,2017.
[26] HAUPTMANN A,LUCKA F,BETCKE M,et al.Model based learning for accelerated,limited-view 3D photoacoustic tomography.IEEE Transactions on Medical Imaging,2018,37(6):1382-1393.
[27] HALTMEIER M,ANTHOLZER S,SCHWAB J,et al.Photoacoustic image reconstruction via deep learning//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2018.2018:104944U.
[28] SCHWAB J,ANTHOLZER S,NUSTER R,et al.Real-time photoacoustic proJection imaging using deep learning.arXiv:1801.06693,2018.
[29] SCHWAB J,ANTHOLZER S,HALTMEIER M.Learned backproJection for sparse and limited view photoacoustic tomography//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2019.2019:1087837
[30] SUN Z,HAN D,YUAN Y.2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal.Compu-ters in Biology and Medicine,2016,76:60-68.
[31] WAIBEL D J E.Photoacoustic image reconstruction to solve the acoustic inverse problem with deep learning.University of Heidelberg,2018.
[32] WAIBEL D,GRHL J,ISENSEE F,et al.Reconstruction of ini-tial pressure from limited view photoacoustic images using deep learning//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2018.2018:104942S.
[33] SCHWAB J,ANTHOLZER S,NUSTER R,et al.DALnet: high-resolution photoacoustic proJection imaging using deep learning.arXiv:1801.06693,2018.
[34] ANTHOLZER S,HALTMEIER M,SCHWAB J.Deep learning for photoacoustic tomography from sparse data.Inverse Problems in Science and Engineering,2018,27(6):1-19.
[35] SCHWAB J,ANTHOLZER S,HALTMEIER M.Deep null space learning for inverse problems:Convergence analysis and rates.arXiv:1806.06137,2018.
[36] ANTHOLZER S,SCHWAB J,HALTMEIER M.Deep learning versus l1-minimization for compressed sensing photoacoustic tomography.arXiv:1901.06510,2019.
[37] AWASTHI N,PRABHAKAR K R,KALVA S K,et al.PAFuse:deep supervised approach for the fusion of photoacoustic images with distinct reconstruction characteristics.Biomedi-cal Optics Express,2019,10(5):2227-2243.
[38] ADLER J,KTEM O.Solving ill-posed inverse problems using iterative deep neural networks.Inverse Problems,2017,33(12):124007.
[39] LI H,SCHWAB J,ANTHOLZER S,et al.NETT_solving inverse problems with deep neural networks.arXiv:1803.00092,2018.
[40] ARRIDGE S,BEARD P,BETCKE M,et al.Accelerated high-resolution photoacoustic tomography via compressed sensing.Physics in Medicine and Biology,2016,61(24):8908-8940.
[41] SCHWAB J,ANTHOLZER S,HALTMEIER M.Big in Japan:regularizing networks for solving inverse problems.arXiv:1812.00965,2018.
[42] ANTHOLZER S,SCHWAB J,MARSCHALLINGER J B,et al.NETT regularization for compressed sensing photoacoustic tomography.arXiv:1901.11158v1,2019.
[43] SCHWAB J,ANTHOLZER S,NUSTER R,et al.Deep learning of truncated singular values for limited view photoacoustic tomography//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2019.2019:1087836.
[44] ANDRYCHOWICZ M,DENIL M,GOMEZ S,et al.Learning to learn by gradient descent by gradient descent//Proceedings of 30th Annual Conference on Neural Information Processing Systems 2016 (NIPS2016).Barcelona,Spain,2016:3981-3989.
[45] HAUPTMANN A,COX B,LUCKA F,et al.Approximate kspace models and deep learning for fast photoacoustic reconstruction//Machine Learning for Medical Image Reconstruction (MLMIR 2018).Lecture Notes in Computer Science.Cham:Springer,2018:103-111.
[46] SUN Z,ZHENG L.Progress in Quantitative photoacoustictomography.Chinese Journal of Luminescence,2017,38(9):1222-1232.
[47] JIN H,ZHANG R,LIU S,et al.A single sensor dual-modality photoacoustic fusion imaging for compensation of light fluence variation.IEEE Transactions on Biomedical Engineering,2019,66(6):1810-1813.
[48] CAI C,DENG K,MA C,et al.End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging.Optics Letters,2018,43(12):2752-2755.
[49] KIRCHNER T,GRHL J,MAIER-HEIN L.Context encoding enables machine learning-based quantitative photoacoustics.Journal of Biomedical Optics,2018,23(5):056008.
[50] GRHL J,KIRCHNER T,ADLER T,et al.Confidence estimation for machine learning-based quantitative photoacoustics.Journal of Imaging,2018,4:147.
[51] TREEBY B E,COX B T.k-Wave:MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields.Journal of Biomedical Optics,2010,15(2):1-12.
[52] JACQUES S L.Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation.Photoacoustics,2014,2(4):137-142.
[53] SUN Z,YUAN Y,HAN D.A computer-based simulator for intravascular photoacoustic images.Computers in biology and medicine,2017,81:176-187.
[1] 单美静, 秦龙飞, 张会兵. L-YOLO:适用于车载边缘计算的实时交通标识检测模型[J]. 计算机科学, 2021, 48(1): 89-95.
[2] 何彦辉, 吴桂兴, 吴志强. 基于域适应的X光图像的目标检测[J]. 计算机科学, 2021, 48(1): 175-181.
[3] 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述[J]. 计算机科学, 2021, 48(1): 209-216.
[4] 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232.
[5] 于文家, 丁世飞. 基于自注意力机制的条件生成对抗网络[J]. 计算机科学, 2021, 48(1): 241-246.
[6] 仝鑫, 王斌君, 王润正, 潘孝勤. 面向自然语言处理的深度学习对抗样本综述[J]. 计算机科学, 2021, 48(1): 258-267.
[7] 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59.
[8] 何鑫, 许娟, 金莹莹. 行为关联网络:完整的变化行为建模[J]. 计算机科学, 2020, 47(9): 123-128.
[9] 张佳嘉, 张小洪. 多分支卷积神经网络肺结节分类方法及其可解释性[J]. 计算机科学, 2020, 47(9): 129-134.
[10] 叶亚男, 迟静, 于志平, 战玉丽, 张彩明. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149.
[11] 朱玲莹, 桑庆兵, 顾婷婷. 基于视差信息的无参考立体图像质量评价[J]. 计算机科学, 2020, 47(9): 150-156.
[12] 邓良, 许庚林, 李梦杰, 陈章进. 基于深度学习与多哈希相似度加权实现快速人脸识别[J]. 计算机科学, 2020, 47(9): 163-168.
[13] 崔彤彤, 王桂玲, 高晶. 基于1DCNN-LSTM的船舶轨迹分类方法[J]. 计算机科学, 2020, 47(9): 175-184.
[14] 刘海潮, 王莉. 基于深度图卷积胶囊网络的图分类模型[J]. 计算机科学, 2020, 47(9): 219-225.
[15] 暴雨轩, 芦天亮, 杜彦辉. 深度伪造视频检测技术综述[J]. 计算机科学, 2020, 47(9): 283-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .