计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 148-152.doi: 10.11896/JsJkx.190700046
孙正, 王新宇
SUN Zheng and WANG Xin-yu
摘要: 光声成像(Photoacoustic Imaging,PAI)是一种多物理场耦合的无创生物医学功能成像技术,它将纯光学成像的高对比度与超声成像的高空间分辨率相结合,可同时获得生物组织的结构和功能成分信息。近年来,随着深度学习算法在医学图像处理中的广泛应用,基于深度学习的光声成像算法也成为该领域的研究热点。对深度学习在PAI图像重建中的应用现状进行综述,归纳和总结现有的算法,分析目前存在的问题,并展望未来可能的发展趋势。
中图分类号:
[1] YAO J,WANG LV.Recent progress in photoacoustic molecular imaging.Current Opinion in Chemical Biology,2018,45:104-112. [2] POUDEL J,LOU Y,ANASTASIO M A.A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography.doi:10.1088/1361-6560/ab2017. [3] BU S,YAMAKAWAY M,SHIINA T.Interpolation method for model-based 3-D planar photoacoustic tomography reconstruction//MBE,医用?生体工学研究会.2011:139-142. [4] SYED TA,KRISHNAN VP,SIVASWAMY J.Numerical inversion of circular arc Radon transform.IEEE Transactions on Computational Imaging,2016,2(4):540-549. [5] WANG J,WANG Y.An Efficient compensation method for limited-view photoacoustic imaging reconstruction based on Gerchberg-Papoulis extrapolation.Applied Sciences,2017,7(5):505. [6] SUNNEGRDH J,DANIELSSON P E.Regularized iterative weighted filtered backproJection for helical cone-beam CT.Medical Physics,2008,35(9):4173-4185. [7] ANTHOLZER S,SCHWAB J,BAUER-MARSCHALLINGER J,et al.NETT regularization for compressed sensing photoacoustic tomography//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2019.2019:108783B. [8] SYED T A,KRISHNAN V P,SIVASWAMY J.Numerical inversion of circular arc radon transform .IEEE Transactions on Computational Imaging,2017,2(4):540-549. [9] GUO W.Research on Reconstruction Algorithms of CT with Incomplete ProJection Data .Changshun:Jilin University,2011. [10] SU B L,ZHANG Y H,PENG L H,et al.Simultaneous iterative reconstruction technique for electrical capacitance tomography .Journal of Tsinghua University(Science and Technology),2000(9):90-92. [11] CHEN X,HU H L,GAO X X,et al.Comparison of Algebraic Reconstruction Technique and Simultaneous Iterative Reconstruction Technique in Electrical Capacitance Tomography Image Reconstruction .Journal of Xi’an Jiaotong University,2011,45(4):25-29. [12] YANG D W,XING D,ZHAO X,et al.A combined reconstruction algorithm for limited-view multi-element photoacoustic imaging .Chinese Physics Letters,2010,27(5):144-147. [13] CHAUDHARY G,ROUMELIOTIS M,CARSON J J L,et al.Comparison of reconstruction algorithms for sparse-array detection photo-acoustic tomography //Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing.2010,7564:756434. [14] WANG Q,WU Y N.New Analytical Solution to Extrapolation Problem for Band-Limited Signals .Journal of Electronics and Information Technology,1999,21(6):825-828. [15] LIU X Y,PENG D,GUO W,et al.Compressed sensing photoacoustic imaging based on fast alternating direction algorithm .International Journal of Biomedical Imaging,2012,2012:206-214. [16] VASWANI N,LU W.Modified-CS:modifying compressive sensing for problems with partially known support .IEEE Transactions on Signal Processing,2010,58(9):4595-4607. [17] MENG J,WANG LV,YING L,et al.Compressed-sensing photoacoustic computed tomography in vivo with partially known support .Medical & Biological Imaging.2012,20(15):16510-16523. [18] LIANG D,ZHANG H F,YING L.Compressed-sensing photoacoustic imaging based on random optical illumination .International Journal of Functional Informatics & Personalised Medicine,2009,2(4):394-406. [19] ARRIDGE S,BEARD P,BETCKE M,et al.Accelerated high-resolution photoacoustic tomography via compressed sensing .Physics in Medicine & Biology,2016,61(24):8908. [20] MENG J,JIANG Z,WANG LV,et al.High-speed,sparse-sampling three-dimensional photoacoustic computed tomography in vivo based on principal component analysis.Journal of Biomedical Lptics,2016,21(7):076007. [21] LITJENS G,KOOI T,BEJNORDI B E,et al.A survey on deep learning in medical image analysis.Medical Image Analysis,2017,42(9):60-88. [22] WANG G,YE J C,MUELLER K,et al.Image reconstruction is a new frontier of machine learning.IEEE Transactions on Medical Imaging,2018,37(6):1289-1296. [23] LUCAS A,ILIADIS M,MOLINA R,et al.Using deep neural networks for inverse problems in imaging:beyond analytical methods.IEEE Signal Processing Magazine,2018,35(1):20-36. [24] HALTMEIER M,ANTHOLZER S,SCHWAB J,et al.Photoacoustic image reconstruction via deep learning//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2018.2018:104944U. [25] KELLY B,MATTHEWS T P,ANASTASIO M A.Deep lear-ning-guided image reconstruction from incomplete data//Proceedings of 31st Annual Conference on Neural Information Processing Systems (NIPS 2017).Long Beach,CA,USA,2017. [26] HAUPTMANN A,LUCKA F,BETCKE M,et al.Model based learning for accelerated,limited-view 3D photoacoustic tomography.IEEE Transactions on Medical Imaging,2018,37(6):1382-1393. [27] HALTMEIER M,ANTHOLZER S,SCHWAB J,et al.Photoacoustic image reconstruction via deep learning//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2018.2018:104944U. [28] SCHWAB J,ANTHOLZER S,NUSTER R,et al.Real-time photoacoustic proJection imaging using deep learning.arXiv:1801.06693,2018. [29] SCHWAB J,ANTHOLZER S,HALTMEIER M.Learned backproJection for sparse and limited view photoacoustic tomography//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2019.2019:1087837 [30] SUN Z,HAN D,YUAN Y.2-D image reconstruction of photoacoustic endoscopic imaging based on time-reversal.Compu-ters in Biology and Medicine,2016,76:60-68. [31] WAIBEL D J E.Photoacoustic image reconstruction to solve the acoustic inverse problem with deep learning.University of Heidelberg,2018. [32] WAIBEL D,GRHL J,ISENSEE F,et al.Reconstruction of ini-tial pressure from limited view photoacoustic images using deep learning//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2018.2018:104942S. [33] SCHWAB J,ANTHOLZER S,NUSTER R,et al.DALnet: high-resolution photoacoustic proJection imaging using deep learning.arXiv:1801.06693,2018. [34] ANTHOLZER S,HALTMEIER M,SCHWAB J.Deep learning for photoacoustic tomography from sparse data.Inverse Problems in Science and Engineering,2018,27(6):1-19. [35] SCHWAB J,ANTHOLZER S,HALTMEIER M.Deep null space learning for inverse problems:Convergence analysis and rates.arXiv:1806.06137,2018. [36] ANTHOLZER S,SCHWAB J,HALTMEIER M.Deep learning versus l1-minimization for compressed sensing photoacoustic tomography.arXiv:1901.06510,2019. [37] AWASTHI N,PRABHAKAR K R,KALVA S K,et al.PAFuse:deep supervised approach for the fusion of photoacoustic images with distinct reconstruction characteristics.Biomedi-cal Optics Express,2019,10(5):2227-2243. [38] ADLER J,KTEM O.Solving ill-posed inverse problems using iterative deep neural networks.Inverse Problems,2017,33(12):124007. [39] LI H,SCHWAB J,ANTHOLZER S,et al.NETT_solving inverse problems with deep neural networks.arXiv:1803.00092,2018. [40] ARRIDGE S,BEARD P,BETCKE M,et al.Accelerated high-resolution photoacoustic tomography via compressed sensing.Physics in Medicine and Biology,2016,61(24):8908-8940. [41] SCHWAB J,ANTHOLZER S,HALTMEIER M.Big in Japan:regularizing networks for solving inverse problems.arXiv:1812.00965,2018. [42] ANTHOLZER S,SCHWAB J,MARSCHALLINGER J B,et al.NETT regularization for compressed sensing photoacoustic tomography.arXiv:1901.11158v1,2019. [43] SCHWAB J,ANTHOLZER S,NUSTER R,et al.Deep learning of truncated singular values for limited view photoacoustic tomography//Proceedings of SPIE International Conference on Photons Plus Ultrasound:Imaging and Sensing 2019.2019:1087836. [44] ANDRYCHOWICZ M,DENIL M,GOMEZ S,et al.Learning to learn by gradient descent by gradient descent//Proceedings of 30th Annual Conference on Neural Information Processing Systems 2016 (NIPS2016).Barcelona,Spain,2016:3981-3989. [45] HAUPTMANN A,COX B,LUCKA F,et al.Approximate kspace models and deep learning for fast photoacoustic reconstruction//Machine Learning for Medical Image Reconstruction (MLMIR 2018).Lecture Notes in Computer Science.Cham:Springer,2018:103-111. [46] SUN Z,ZHENG L.Progress in Quantitative photoacoustictomography.Chinese Journal of Luminescence,2017,38(9):1222-1232. [47] JIN H,ZHANG R,LIU S,et al.A single sensor dual-modality photoacoustic fusion imaging for compensation of light fluence variation.IEEE Transactions on Biomedical Engineering,2019,66(6):1810-1813. [48] CAI C,DENG K,MA C,et al.End-to-end deep neural network for optical inversion in quantitative photoacoustic imaging.Optics Letters,2018,43(12):2752-2755. [49] KIRCHNER T,GRHL J,MAIER-HEIN L.Context encoding enables machine learning-based quantitative photoacoustics.Journal of Biomedical Optics,2018,23(5):056008. [50] GRHL J,KIRCHNER T,ADLER T,et al.Confidence estimation for machine learning-based quantitative photoacoustics.Journal of Imaging,2018,4:147. [51] TREEBY B E,COX B T.k-Wave:MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields.Journal of Biomedical Optics,2010,15(2):1-12. [52] JACQUES S L.Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation.Photoacoustics,2014,2(4):137-142. [53] SUN Z,YUAN Y,HAN D.A computer-based simulator for intravascular photoacoustic images.Computers in biology and medicine,2017,81:176-187. |
[1] | 单美静, 秦龙飞, 张会兵. L-YOLO:适用于车载边缘计算的实时交通标识检测模型[J]. 计算机科学, 2021, 48(1): 89-95. |
[2] | 何彦辉, 吴桂兴, 吴志强. 基于域适应的X光图像的目标检测[J]. 计算机科学, 2021, 48(1): 175-181. |
[3] | 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述[J]. 计算机科学, 2021, 48(1): 209-216. |
[4] | 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232. |
[5] | 于文家, 丁世飞. 基于自注意力机制的条件生成对抗网络[J]. 计算机科学, 2021, 48(1): 241-246. |
[6] | 仝鑫, 王斌君, 王润正, 潘孝勤. 面向自然语言处理的深度学习对抗样本综述[J]. 计算机科学, 2021, 48(1): 258-267. |
[7] | 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59. |
[8] | 何鑫, 许娟, 金莹莹. 行为关联网络:完整的变化行为建模[J]. 计算机科学, 2020, 47(9): 123-128. |
[9] | 张佳嘉, 张小洪. 多分支卷积神经网络肺结节分类方法及其可解释性[J]. 计算机科学, 2020, 47(9): 129-134. |
[10] | 叶亚男, 迟静, 于志平, 战玉丽, 张彩明. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149. |
[11] | 朱玲莹, 桑庆兵, 顾婷婷. 基于视差信息的无参考立体图像质量评价[J]. 计算机科学, 2020, 47(9): 150-156. |
[12] | 邓良, 许庚林, 李梦杰, 陈章进. 基于深度学习与多哈希相似度加权实现快速人脸识别[J]. 计算机科学, 2020, 47(9): 163-168. |
[13] | 崔彤彤, 王桂玲, 高晶. 基于1DCNN-LSTM的船舶轨迹分类方法[J]. 计算机科学, 2020, 47(9): 175-184. |
[14] | 刘海潮, 王莉. 基于深度图卷积胶囊网络的图分类模型[J]. 计算机科学, 2020, 47(9): 219-225. |
[15] | 暴雨轩, 芦天亮, 杜彦辉. 深度伪造视频检测技术综述[J]. 计算机科学, 2020, 47(9): 283-292. |
|