计算机科学 ›› 2018, Vol. 45 ›› Issue (6): 41-45.doi: 10.11896/j.issn.1002-137X.2018.06.007

• 第十四届全国Web信息系统及其应用学术会议 • 上一篇    下一篇

一种融合节点属性信息的社会网络链接预测方法

张昱, 高克宁, 于戈   

  1. 东北大学计算机科学与工程学院 沈阳110819
  • 收稿日期:2017-03-11 出版日期:2018-06-15 发布日期:2018-07-24
  • 作者简介:张 昱(1980-),男,博士生,讲师,CCF会员,主要研究方向为社会网络,E-mail:zhangyu@mail.neu.edu.cn;高克宁 教授,主要研究方向为Web信息处理、社会网络;于 戈 教授,博士生导师,主要研究方向为数据库理论与技术等,E-mail:yuge@mail.neu.edu.cn(通信作者)
  • 基金资助:
    本文受教育部基本科研业务费项目青年教师科研启动基金(N151603001),辽宁省科技攻关项目博士启动基金(201601026)资助

Method of Link Prediction in Social Networks Using Node Attribute Information

ZHANG Yu, GAO Ke-ning, YU Ge   

  1. School of Computer Science and Engineering,Northeastern University,Shenyang 110819,China
  • Received:2017-03-11 Online:2018-06-15 Published:2018-07-24

摘要: 随着大规模社会网络的发展,链接预测成为了一个重要的研究课题。研究了在社会网络中融合节点属性信息进行链接预测,在传统的社会-属性网络图模型的基础上,将节点属性的类别这一重要参量加入到网络构建中。基于此,提出了一系列为网络中不同类型的连边分配边权重的方法,最后通过随机游走的方法进行网络链接的预测。实验表明,所提链接预测方法相比同类方法有明显的效果提升。

关键词: 链接预测, 社会网络, 社会-属性网络, 社会节点, 属性节点

Abstract: With the development of large social networks,link prediction has become an important research subject.The link prediction problem in social networks using rich node attribute information was studied in this paper.Based on attribute-augmented social network model,which means rebuilding an augmented network by adding additional nodes with each node corresponding to an attribute,called social-attribute network,the classification of node attributes was added to the model as an important parameter.Several methods of assigning weights for different kinds of links were proposed.Then a random walk method was used for link prediction in the network.Experimental results reveal that this method has better performance compared with other similar methods.

Key words: Link prediction, Social network, Social-attribute network, Social node, Attribute node

中图分类号: 

  • TP311
[1]LIBEN-NOWELL D,KLEINBERG J.The link-prediction problem for social network[J].Journal of the American Society for Information Science and Technology,2007,58(7):1019-1031.
[2]LÜ L,ZHOU T.Link prediction in complex networks:A survey[J].Physica A Statistical Mechanics & Its Applications,2011,390(16):1150-1170.
[3]HASAN M A,ZAKI M J.A Survey of Link Prediction in Social Networks[M]//Social Networks Data Analytics.Springer US,2011:243-275.
[4]LICHTENWALTER R N,LUSSIER J T,CHAWLA N V.New perspectives and methods in link prediction[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington DC,USA,2010:243-252.
[5]HASAN,MOHAMMAD A.Link Prediction using Supervised Learning[J].Proc of Sdm Workshop on Link Analysis Counter-terrorism & Security,2006,30(9):798-805.
[6]HSU C C,LAI Y A,CHEN W H,et al.Unsupervised Ranking using Graph Structures and Node Attributes[C]//Tenth ACM International Conference on Web Search and Data Mining.ACM,2017:771-779.
[7]BACKSTROM L,LESKOVEC J.Supervised random walks: predicting and recommending links in social networks[C]//ACM International Conference on Web Search & Data Mining.ACM,2011:635-644.
[8]YIN Z,GUPTA M,WENINGER T,et al.LINKREC:a unified framework for link recommendation with user attributes and graph structure[C]//International Conference on World Wide Web(WWW 2010).Raleigh,North Carolina,USA,2010:1211-1212.
[9]YIN Z,GUPTA M,WENINGER T,et al.A Unified Framework for Link Recommendation Using Random Walks[C]//Procee-dings of the 2010 International Conference on Advances in Social Networks Analysis and Mining.IEEE Computer Society,2010:152-159.
[10]GONG N Z,TALWALKAR A,MACKEY L,et al.Joint Link Prediction and Attribute Inference Using a Social-Attribute Network[J].Acm Transactions on Intelligent Systems & Technology,2014,5(2):1-20.
[11]TONG H,FALOUTSOS C,PAN J Y.Fast Random Walk with Restart and Its Applications[C]//International Conference on Data Mining.IEEE,2006:613-622.
[1] 胡昕彤, 沙朝锋, 刘艳君. 基于随机投影和主成分分析的网络嵌入后处理算法[J]. 计算机科学, 2021, 48(5): 124-129.
[2] 陈恒, 王维美, 李冠宇, 史一民. 四元数关系旋转的知识图谱补全模型[J]. 计算机科学, 2021, 48(5): 225-231.
[3] 杨卓璇, 马源培, 严冠. 基于耦合强度的多项式时间社团探测算法[J]. 计算机科学, 2020, 47(6A): 102-107.
[4] 富坤, 仇倩, 赵晓梦, 高金辉. 基于节点演化分阶段优化的事件检测方法[J]. 计算机科学, 2020, 47(5): 96-102.
[5] 刘苗苗,扈庆翠,郭景峰,陈晶. 符号网络链接预测算法研究综述[J]. 计算机科学, 2020, 47(2): 21-30.
[6] 李忠文, 丁烨, 花忠云, 李君一, 廖清. 结合三元组重要性的知识图谱补全模型[J]. 计算机科学, 2020, 47(11): 231-236.
[7] 陈晓军, 向阳. STransH:一种改进的基于翻译模型的知识表示模型[J]. 计算机科学, 2019, 46(9): 184-189.
[8] 韩忠明, 郑晨烨, 段大高, 董健. 基于多信息融合表示学习的关联用户挖掘算法[J]. 计算机科学, 2019, 46(4): 77-82.
[9] 伍杰华,沈静,周蓓. 基于社区特征的平衡模块度最大化社交链接预测模型[J]. 计算机科学, 2019, 46(3): 253-259.
[10] 徐方, 邓敏, 熊曾刚, 叶从欢, 徐宁. 移动社会网络中基于多维上下文匹配的数据转发算法[J]. 计算机科学, 2019, 46(2): 81-87.
[11] 金婷, 谭文安, 孙勇, 赵尧. 模糊多目标进化的社会团队形成方法[J]. 计算机科学, 2019, 46(2): 315-320.
[12] 单娜, 李龙杰, 刘昱阳, 陈晓云. 基于节点连接模式相关性的链接预测方法[J]. 计算机科学, 2019, 46(12): 20-25.
[13] 胡庆成, 张勇, 邢春晓. 基于有重叠社区划分的社会网络影响最大化方法研究[J]. 计算机科学, 2018, 45(6): 32-35.
[14] 张林姿, 贾传亮. 基于拓扑路径的网络演化传播机制研究[J]. 计算机科学, 2018, 45(11A): 308-314.
[15] 珠杰,洪军建. 基于SDAs的人物关系抽取方法研究[J]. 计算机科学, 2017, 44(Z6): 141-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[3] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[4] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[5] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[7] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[8] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .