计算机科学 ›› 2019, Vol. 46 ›› Issue (9): 184-189.doi: 10.11896/j.issn.1002-137X.2019.09.026
陈晓军, 向阳
CHEN Xiao-jun, XIANG Yang
摘要: 最近,以深度学习为代表的表示学习技术受到广泛关注。表示学习旨在将研究对象的语义信息表示为低维稠密实值向量。因此,一系列知识表示模型被提出,其中基于翻译模型的经典方法TransE不仅模型复杂度低、计算效率高,而且具有良好的知识表达能力。但是,TransE方法在处理自反、一对多、多对一和多对多等复杂关系时存在局限性。鉴于此,文中提出一种改进的知识表示模型STransH,分别在实体空间和关系空间建模,并采用单层神经网络的非线性操作来加强实体和关系的语义联系。同时,受TransH模型的启发,引入投影到特定关系超平面的机制,使得实体在不同的关系中有不同的角色。在模型训练时,通过替换语义相似实体来提高生成负例的质量。最后,在公开的数据集FB15K和WN18上进行链接预测实验,分析和验证了所提方法的有效性。相比于TransE和TransH模型,STransH在各项性能指标上均取得了较大提升,其Hits@10和三元组分类准确率分别提高近10%。
中图分类号:
[1]MILLER G.Wordnet-a Lexical Database for English [J].Communications of the Acm,1995,38(11):39-41. [2]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.New York:ACM,2008:1247-1250. [3]BENGIO Y,COURVILLE A,VINCENT P.Representationlearning:a review and new perspectives [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2013,35(8):1798-1828. [4]MIKOLOV T,SUTSKEVER I,CHEN K,et al.DistributedRepresentations of Words and Phrases and their Compositionality [J].Advances in Neural Information Processing Systems,2013,26:3111-3119. [5]BORDES A,WESTON J,COLLOBERT R,et al.LearningStructured Embeddings of Knowledge Bases[C]//Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2011:301-306. [6]SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Neural Information Processing Systems 2013.Lake Tahoe:NIPS,2013:926-934. [7]BORDES A,GLOROT X,WESTON J,et al.A semantic matching energy function for learning with multi-relational data [J].Machine Learning,2014,94(2):233-259. [8]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating Embeddings for Modeling Multi-relational Data[C]//Proceedings of Neural Information Processing Systems 2013.Massachusetts:MIT Press,2013:2787-2795. [9]NGUYEN D Q,SIRTS K,QU L,et al.STransE:a novel embedding model of entities and relationships in knowledge bases[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics.San Diego:ACL,2016:460-466. [10]WANG Z,ZHAN J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2014:1112-1119. [11]JIANG T W,QIN B,LIU T.Open Domain Knowledge Reaso-ning for Chinese Based on Representation Learning[J].Journal of Chinese Information Processing,2018,32(2):34-41.(in Chinese)姜天文,秦兵,刘挺.基于表示学习的开放域中文知识推理 [J].中文信息学报,2018,32(2):34-41. [12]LIN Y,LIU Z,ZHU X,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.Palo Alto:AAAI Press,2015:2181-2187. [13]LIN Y,LIU Z,LUAN H,et al.Modeling Relation Paths forRepresentation Learning of Knowledge Bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Lisbon:ACL,2015:705-714. [14]XIAO H,HUANG M,HAO Y,et al.TransA:An adaptive approach for knowledge graph embedding [J].arXiv:1509.05490,2015. [15]JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.Beijing:ACL,2015:687-696. [16]JENATTON R,ROUXN L,BORDES A,et al.A latent factor model for highly multi-relational data[C]//Proceedings of Neural Information Processing Systems 2012.Massachusetts:MIT Press,2012:3167-3175. [17]NICKEL M,TRESP V,KRIEGELH P.A Three-Way Model for Collective Learning on Multi-Relational Data[C]//Proceedings of the 28th International Conference on Machine Learning.New York:ACM,2011:809-816. [18]AN B,HAN X P,SUN L,et al.Triple Classification Based on Synthesized Features for Knowledge Based[J].Journal of Chinese Information Processing,2016,30(6):84-89.(in Chinese)安波,韩先培,孙乐,等.基于分布式表示和多特征融合的知识库三元组分类 [J].中文信息学报,2016,30(6):84-89. |
[1] | 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲. 基于无监督集群级的科技论文异质图节点表示学习方法 Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level 计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196 |
[2] | 黄丽, 朱焱, 李春平. 基于异构网络表征学习的作者学术行为预测 Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning 计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078 |
[3] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[4] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[5] | 吴子仪, 李邵梅, 姜梦函, 张建朋. 基于自注意力模型的本体对齐方法 Ontology Alignment Method Based on Self-attention 计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190 |
[6] | 孔世明, 冯永, 张嘉云. 融合知识图谱的多层次传承影响力计算与泛化研究 Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph 计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144 |
[7] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[8] | 王杰, 李晓楠, 李冠宇. 基于自适应注意力机制的知识图谱补全算法 Adaptive Attention-based Knowledge Graph Completion 计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129 |
[9] | 黄璞, 杜旭然, 沈阳阳, 杨章静. 基于局部正则二次线性重构表示的人脸识别 Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation 计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018 |
[10] | 马瑞新, 李泽阳, 陈志奎, 赵亮. 知识图谱推理研究综述 Review of Reasoning on Knowledge Graph 计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122 |
[11] | 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓. 一种可快速迁移的领域知识图谱构建方法 Fast and Transmissible Domain Knowledge Graph Construction Method 计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018 |
[12] | 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥. 军事指控保障领域命名实体识别语料库的构建 Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support 计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132 |
[13] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[14] | 钟将, 尹红, 张剑. 基于学术知识图谱的辅助创新技术研究 Academic Knowledge Graph-based Research for Auxiliary Innovation Technology 计算机科学, 2022, 49(5): 194-199. https://doi.org/10.11896/jsjkx.210400195 |
[15] | 朱敏, 梁朝晖, 姚林, 王翔坤, 曹梦琦. 学术引用信息可视化方法综述 Survey of Visualization Methods on Academic Citation Information 计算机科学, 2022, 49(4): 88-99. https://doi.org/10.11896/jsjkx.210300219 |
|