计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 84-89.doi: 10.11896/jsjkx.190100213

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于DCGRU-RF模型的路网短时交通流预测

熊亭1, 戚湧1, 张伟斌2   

  1. 1 南京理工大学计算机科学与工程学院 南京210094
    2 南京理工大学电子工程与光电技术学院 南京210094
  • 收稿日期:2019-01-25 出版日期:2020-05-15 发布日期:2020-05-19
  • 通讯作者: 戚湧(790815561@qq.com)
  • 作者简介:609688837@qq.com
  • 基金资助:
    国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0108000);江苏省重点研发计划(产业前瞻与共性关键技术)项目(BE2017163);江苏省交通运输科技与成果转化项目(2018Y51)

Short-term Traffic Flow Prediction Based on DCGRU-RF Model for Road Network

XIONG Ting1, QI Yong1, ZHANG Wei-bin2   

  1. 1 School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
    2 School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
  • Received:2019-01-25 Online:2020-05-15 Published:2020-05-19
  • About author:XIONG Ting,born in 1993,master.Her main research interests include data mining,and traffic flow prediction.
    QI Yong,born in 1970,Ph.D,professor,is a member of China Computer Federation.His main research interests include traffic big data and so on.
  • Supported by:
    This work was supported by the Key Program for International S&T Cooperation Projects of China(2016YFE0108000),Key R & D plan of Jiangsu Province(BE2017163),Jiangsu Transportation Technology and Achievement Transformation Project(2018Y51).

摘要: 随着城市化进程的加快,我国城市机动车数量快速增加,使得现有路网容量难以满足交通运输需求,交通拥堵、环境污染、交通事故等问题与日俱增。准确高效的交通流预测作为智能交通系统的核心,能够有效解决交通出行和管理方面的问题。现有的短时交通流预测研究往往基于浅层的模型方法,不能充分反映交通流特性。文中针对复杂的交通网络结构,提出了一种基于DCGRU-RF(Diffusion Convolutional Gated Recurrent Unit-Random Forest)模型的短时交通流预测方法。首先,使用DCGRU(Diffusion Convolutional Gated Recurrent Unit)网络刻画交通流时间序列数据中的时空相关性特征;在获取数据中的依赖关系和潜在特征后,选择RF(Random Forest)模型作为预测器,以抽取的特征为基础构建非线性预测模型,得出最终的预测结果。实验以两条城市道路中的38个检测器为实验对象,选取了5周工作日的交通流数据,并将所提方法与其他常见交通流量预测模型进行比较。结果表明,DCGRU-RF模型能够进一步提高预测精度,准确度可达95%。

关键词: 交通流量预测, 组合预测模型, 深度学习, 路网

Abstract: With the acceleration of urbanization,the number of motor vehicles in cities in China is increasing rapidly,which makes the existing road network capacity difficult to meet the transportation needs,traffic congestion,environmental pollution and traffic accidents are increasing day by day.Accurate and efficient traffic flow prediction,as the core of ITS,can effectively solve the problems of traffic travel and management.The existing short-term traffic flow prediction researches mainly use the shallow mo-del method,so they cannot fully reflect the traffic flow characteristics.Therefore,this paper proposed a short-term traffic flow prediction method based on DCGRU-RF model for complex traffic network structure.The DCGRU network is used to characte-rize the spatio-temporal correlation features in the traffic flow time series data.After obtaining the dependencies and potential features in the data,the RF model is selected as the predictor,and the nonlinear prediction model is constructed based on the extracted features,and finally getting the prediction result.In this experiment,38 detectors in two urban roads were selected as experimental objects,traffic flow data of five working days were selected,and the proposed model was compared with other common traffic flow prediction models.The experimental results show that DCGRU-RF model can further improve the prediction accuracy,the accuracy can reach 95%.

Key words: Traffic flow forecast, Combined forecasting model, Deep learning, Road network

中图分类号: 

  • TP181
[1] YANG D I,WU J P,ZHANG Q S.The development of intelligent transportation system (ITS) and its model research [J].Journal of Beijing University of Aeronautics and Astronautics,2000,26(1):22-25.
[2] LV Y S,DUAN Y J,et al.Traffic Flow Prediction With Big Data:A Deep Learning Approach[J].IEEE,2015,16(2):865-873.
[3] LEVIN M,TSAO Y D.On forecasting freeway occupancies and volumes[J].Transportation Research Record,1980,773:47-49.
[4] VASANTHAKUMAR S,VANAJAKSHI L.Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J].European Transport Research Review,2015,7(3):21.
[5] GUO J,HUANG W,WILLIAMS B M.Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J].Transportation Research Part C:Emerging Technologies,2014,43:50-64.
[6] WU C H,HO J M,LEE D T.Travel-time prediction with support vectorregression[J].IEEE transactions on intelligent transportation systems,2004,5(4):276-281.
[7] HOU Y,EDARA P,SUN C.Traffic flow forecasting for urban work zones[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(4):1761-1770.
[8] Xiaolei M,Zhuang D,Zhengbing H,et al.Learning Traffic as Images:A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction[J].Sensors,2017,17(4):818.
[9] HU W,YAN L,LIU K,et al.A short-term traffic flow forecasting method based on the hybrid PSO-SVR[J].NeuralProces-sing Letters,2016,43(1):155-172.
[10] CHEN X B,LIU X,WEI Z J,et al.Short-term Traffic FlowForecasting of Road Network Based on GA-LSSVR Model[J].Journal of Transportation Systems Engineering and Information Technology,2016,17(1):60-66.
[11] WU Y,TAN H.Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework[J].arXiv:1612.01022.
[12] BENGIO Y.Learning Deep Architectures for AI[J].Foundations & Trends® in Machine Learning,2009,2(1):1-127.
[13] BREIMAN L.Random Forests[J].Machine Learning,2001,45(1):5-32.
[14] LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J].arXiv:1707.01926,2017.
[15] CHO K, MERRIENBOER B V,GULCEHRE C,et al.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J].arXiv:1406.1078.
[16] LIPPI M,BERTINI M,FRASCONI P.Short-Term Traffic Flow Forecasting:An Experimental Comparison of Time-Series Analysis and Supervised Learning[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(2):871-882.
[17] PEARSON,KARL.The Problem of the Random Walk[J].Nature,1905,72(1865):294-294.
[18] WANG D,ZHANG Q,WU S Y.Traffic Flow Forecast with Urban Transport Network [C]//2016 IEEE InternationalConfe-rence on Intelligent Transportation Engineering.2016:139-143.
[19] LUO X L,JIAO Q Q,NIU L Y,et al.Short-term traffic flow prediction based on deep learning[J].Application Research of Computers,2017,34(1):91-95.
[20] BAI S,KOLTER J Z,KOLTUN V.An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling[J].arXiv:1803.01271.
[21] ZHENG Z,PAN L,PHOLSENA K.Mode Decomposition Based Hybrid Model for Traffic Flow Prediction[C]//2018 IEEE Third International Conference on Data Science in Cyberspace (DSC).IEEE,2018:521-526.
[1] 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232.
[2] 于文家, 丁世飞. 基于自注意力机制的条件生成对抗网络[J]. 计算机科学, 2021, 48(1): 241-246.
[3] 仝鑫, 王斌君, 王润正, 潘孝勤. 面向自然语言处理的深度学习对抗样本综述[J]. 计算机科学, 2021, 48(1): 258-267.
[4] 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59.
[5] 何鑫, 许娟, 金莹莹. 行为关联网络:完整的变化行为建模[J]. 计算机科学, 2020, 47(9): 123-128.
[6] 叶亚男, 迟静, 于志平, 战玉丽, 张彩明. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149.
[7] 邓良, 许庚林, 李梦杰, 陈章进. 基于深度学习与多哈希相似度加权实现快速人脸识别[J]. 计算机科学, 2020, 47(9): 163-168.
[8] 暴雨轩, 芦天亮, 杜彦辉. 深度伪造视频检测技术综述[J]. 计算机科学, 2020, 47(9): 283-292.
[9] 袁野, 和晓歌, 朱定坤, 王富利, 谢浩然, 汪俊, 魏明强, 郭延文. 视觉图像显著性检测综述[J]. 计算机科学, 2020, 47(7): 84-91.
[10] 王文刀, 王润泽, 魏鑫磊, 漆云亮, 马义德. 基于堆叠式双向LSTM的心电图自动识别算法[J]. 计算机科学, 2020, 47(7): 118-124.
[11] 刘燕, 温静. 基于注意力机制的复杂场景文本检测[J]. 计算机科学, 2020, 47(7): 135-140.
[12] 张志扬, 张凤荔, 谭琪, 王瑞锦. 基于深度学习的信息级联预测方法综述[J]. 计算机科学, 2020, 47(7): 141-153.
[13] 蒋文斌, 符智, 彭晶, 祝简. 一种基于4Bit编码的深度学习梯度压缩算法[J]. 计算机科学, 2020, 47(7): 220-226.
[14] 陈晋音, 张敦杰, 林翔, 徐晓东, 朱子凌. 基于影响力最大化策略的抑制虚假消息传播的方法[J]. 计算机科学, 2020, 47(6A): 17-23.
[15] 程哲, 白茜, 张浩, 王世普, 梁宇. 使用深层卷积神经网络提高Hi-C 数据分辨率[J]. 计算机科学, 2020, 47(6A): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .