计算机科学 ›› 2020, Vol. 47 ›› Issue (5): 84-89.doi: 10.11896/jsjkx.190100213
熊亭1, 戚湧1, 张伟斌2
XIONG Ting1, QI Yong1, ZHANG Wei-bin2
摘要: 随着城市化进程的加快,我国城市机动车数量快速增加,使得现有路网容量难以满足交通运输需求,交通拥堵、环境污染、交通事故等问题与日俱增。准确高效的交通流预测作为智能交通系统的核心,能够有效解决交通出行和管理方面的问题。现有的短时交通流预测研究往往基于浅层的模型方法,不能充分反映交通流特性。文中针对复杂的交通网络结构,提出了一种基于DCGRU-RF(Diffusion Convolutional Gated Recurrent Unit-Random Forest)模型的短时交通流预测方法。首先,使用DCGRU(Diffusion Convolutional Gated Recurrent Unit)网络刻画交通流时间序列数据中的时空相关性特征;在获取数据中的依赖关系和潜在特征后,选择RF(Random Forest)模型作为预测器,以抽取的特征为基础构建非线性预测模型,得出最终的预测结果。实验以两条城市道路中的38个检测器为实验对象,选取了5周工作日的交通流数据,并将所提方法与其他常见交通流量预测模型进行比较。结果表明,DCGRU-RF模型能够进一步提高预测精度,准确度可达95%。
中图分类号:
[1] | YANG D I,WU J P,ZHANG Q S.The development of intelligent transportation system (ITS) and its model research [J].Journal of Beijing University of Aeronautics and Astronautics,2000,26(1):22-25. |
[2] | LV Y S,DUAN Y J,et al.Traffic Flow Prediction With Big Data:A Deep Learning Approach[J].IEEE,2015,16(2):865-873. |
[3] | LEVIN M,TSAO Y D.On forecasting freeway occupancies and volumes[J].Transportation Research Record,1980,773:47-49. |
[4] | VASANTHAKUMAR S,VANAJAKSHI L.Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J].European Transport Research Review,2015,7(3):21. |
[5] | GUO J,HUANG W,WILLIAMS B M.Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J].Transportation Research Part C:Emerging Technologies,2014,43:50-64. |
[6] | WU C H,HO J M,LEE D T.Travel-time prediction with support vectorregression[J].IEEE transactions on intelligent transportation systems,2004,5(4):276-281. |
[7] | HOU Y,EDARA P,SUN C.Traffic flow forecasting for urban work zones[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(4):1761-1770. |
[8] | Xiaolei M,Zhuang D,Zhengbing H,et al.Learning Traffic as Images:A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction[J].Sensors,2017,17(4):818. |
[9] | HU W,YAN L,LIU K,et al.A short-term traffic flow forecasting method based on the hybrid PSO-SVR[J].NeuralProces-sing Letters,2016,43(1):155-172. |
[10] | CHEN X B,LIU X,WEI Z J,et al.Short-term Traffic FlowForecasting of Road Network Based on GA-LSSVR Model[J].Journal of Transportation Systems Engineering and Information Technology,2016,17(1):60-66. |
[11] | WU Y,TAN H.Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework[J].arXiv:1612.01022. |
[12] | BENGIO Y.Learning Deep Architectures for AI[J].Foundations & Trends® in Machine Learning,2009,2(1):1-127. |
[13] | BREIMAN L.Random Forests[J].Machine Learning,2001,45(1):5-32. |
[14] | LI Y,YU R,SHAHABI C,et al.Diffusion convolutional recurrent neural network:Data-driven traffic forecasting[J].arXiv:1707.01926,2017. |
[15] | CHO K, MERRIENBOER B V,GULCEHRE C,et al.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[J].arXiv:1406.1078. |
[16] | LIPPI M,BERTINI M,FRASCONI P.Short-Term Traffic Flow Forecasting:An Experimental Comparison of Time-Series Analysis and Supervised Learning[J].IEEE Transactions on Intelligent Transportation Systems,2013,14(2):871-882. |
[17] | PEARSON,KARL.The Problem of the Random Walk[J].Nature,1905,72(1865):294-294. |
[18] | WANG D,ZHANG Q,WU S Y.Traffic Flow Forecast with Urban Transport Network [C]//2016 IEEE InternationalConfe-rence on Intelligent Transportation Engineering.2016:139-143. |
[19] | LUO X L,JIAO Q Q,NIU L Y,et al.Short-term traffic flow prediction based on deep learning[J].Application Research of Computers,2017,34(1):91-95. |
[20] | BAI S,KOLTER J Z,KOLTUN V.An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling[J].arXiv:1803.01271. |
[21] | ZHENG Z,PAN L,PHOLSENA K.Mode Decomposition Based Hybrid Model for Traffic Flow Prediction[C]//2018 IEEE Third International Conference on Data Science in Cyberspace (DSC).IEEE,2018:521-526. |
[1] | 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232. |
[2] | 于文家, 丁世飞. 基于自注意力机制的条件生成对抗网络[J]. 计算机科学, 2021, 48(1): 241-246. |
[3] | 仝鑫, 王斌君, 王润正, 潘孝勤. 面向自然语言处理的深度学习对抗样本综述[J]. 计算机科学, 2021, 48(1): 258-267. |
[4] | 丁钰, 魏浩, 潘志松, 刘鑫. 网络表示学习算法综述[J]. 计算机科学, 2020, 47(9): 52-59. |
[5] | 何鑫, 许娟, 金莹莹. 行为关联网络:完整的变化行为建模[J]. 计算机科学, 2020, 47(9): 123-128. |
[6] | 叶亚男, 迟静, 于志平, 战玉丽, 张彩明. 基于改进CycleGan模型和区域分割的表情动画合成[J]. 计算机科学, 2020, 47(9): 142-149. |
[7] | 邓良, 许庚林, 李梦杰, 陈章进. 基于深度学习与多哈希相似度加权实现快速人脸识别[J]. 计算机科学, 2020, 47(9): 163-168. |
[8] | 暴雨轩, 芦天亮, 杜彦辉. 深度伪造视频检测技术综述[J]. 计算机科学, 2020, 47(9): 283-292. |
[9] | 袁野, 和晓歌, 朱定坤, 王富利, 谢浩然, 汪俊, 魏明强, 郭延文. 视觉图像显著性检测综述[J]. 计算机科学, 2020, 47(7): 84-91. |
[10] | 王文刀, 王润泽, 魏鑫磊, 漆云亮, 马义德. 基于堆叠式双向LSTM的心电图自动识别算法[J]. 计算机科学, 2020, 47(7): 118-124. |
[11] | 刘燕, 温静. 基于注意力机制的复杂场景文本检测[J]. 计算机科学, 2020, 47(7): 135-140. |
[12] | 张志扬, 张凤荔, 谭琪, 王瑞锦. 基于深度学习的信息级联预测方法综述[J]. 计算机科学, 2020, 47(7): 141-153. |
[13] | 蒋文斌, 符智, 彭晶, 祝简. 一种基于4Bit编码的深度学习梯度压缩算法[J]. 计算机科学, 2020, 47(7): 220-226. |
[14] | 陈晋音, 张敦杰, 林翔, 徐晓东, 朱子凌. 基于影响力最大化策略的抑制虚假消息传播的方法[J]. 计算机科学, 2020, 47(6A): 17-23. |
[15] | 程哲, 白茜, 张浩, 王世普, 梁宇. 使用深层卷积神经网络提高Hi-C 数据分辨率[J]. 计算机科学, 2020, 47(6A): 70-74. |
|