计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 33-40.doi: 10.11896/jsjkx.191100152

• 新型分布式计算技术与系统* 上一篇    下一篇

一种基于微服务的检察业务服务封装方法

陆懿帆, 曹芮浩, 王俊丽, 闫春钢   

  1. 同济大学电子与信息工程学院嵌入式系统与服务计算教育部重点实验室 上海201804
  • 收稿日期:2019-11-20 修回日期:2020-03-27 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 闫春钢(cgyan2@163.com)
  • 作者简介:374329974@qq.com
  • 基金资助:
    国家重点研发计划(2018YFC0831403)

Method of Encapsulating Procuratorate Affair Services Based on Microservices

LU Yi-fan, CAO Rui-hao, WANG Jun-li, YAN Chun-gang   

  1. Key Laboratory of Embedded System and Service Computing,Ministry of Education,College of Electronics and Information Engineering, Tongji University,Shanghai 201804,China
  • Received:2019-11-20 Revised:2020-03-27 Online:2021-02-15 Published:2021-02-04
  • About author:LU Yi-fan,born in 1995,postgraduate.His main research interests include service computing,service composition,service encapsulation and microservice.
    YAN Chun-gang,born in 1963,Ph.D,professor,Ph.D supervisor.Her main research interests include collaboration and service computing,Petri net mode-ling and analysis.
  • Supported by:
    The National Key Research and Development Project (2018YFC0831403).

摘要: 微服务架构是一种新兴的服务架构风格,在处理复杂服务系统时表现出运行高效、部署灵活等特性,相较于单体式服务架构,能够提供更好的业务管理和服务支持。针对检察院复杂的办案业务,需要对服务进行组合封装,形成新的增值服务以满足用户需求。但是,单独进行服务质量驱动的服务封装不能满足检察业务的需求,因此,结合服务功能和服务质量,提出了微服务架构下图规划算法的改进方法(Improved Graphplan Under MicroService Architecture,IGMA)。该方法首先对服务、用户请求建立数学模型,其次综合服务的功能需求和非功能需求,在不同案件类型下为用户提供多种组合方案,最后建立服务工作流,完成案件服务封装。该方法能够智能判断服务组合结构中的分支结构,并对不同的分支结构建立不同的组合方案。实验结果表明,该方法在服务封装的时效性和准确性上有了较大的提升。

关键词: 微服务, 服务质量, 服务组合, 服务封装, 图规划

Abstract: Microservice architecture is an emerging style of service architecture,which is characterized by efficient operation and flexible deployment when dealing with complex service systems.Compared with monolithic architecture,it can provide better business management and service support.In view of the complex case of the procuratorate affair,it is necessary to combine and encapsulate the services to form new value-added services to meet the needs of users.However,quality-of-service driven service encapsulation alone cannot meet the needs of procuratorate affair.Therefore,combining service functions and quality of service,an improved graphplan under microservice architecture (IGMA) is proposed.Firstly,the method establishes a mathematical model for the service and user request,then integrates the functional and non-functional requirements of the service,and provides users with a variety of combination schemes under different case types.Finally,the service workflow is established to complete the case service encapsulation.This method can intelligently judge the branch structures in the service composition structure and establish different composition schemes for different branch structures.Experimental results show that the proposed method improves the timeliness and accuracy of service encapsulation.

Key words: Microservice, Quality of service(QoS), Service composition, Service encapsulation, Graphplan

中图分类号: 

  • TP393
[1] ZHANG X Z,LYU T Y,ZHANG B.Modeling of complex ser-vice collaborative network based on service interaction behavior[J].Journal of Software,2016,27(2):231-246.
[2] XIN Y Y,NIU J,XIE Z J,et al.Overview of microservice architecture implementation framework[J].Computer Engineering and Application,2018,54(19):16-23.
[3] DU M,LI F F,ZHENG G N,et al.DeepLog:Anomaly Detection and Diagnosis from System Logs through Deep Learning[C]//ACM Conference on Computer and Communications Security (CCS).2017:1285-1298.
[4] DELAC G,SILIC M,SRBLJIC S.A Reliability ImprovementMethod for SOA-Based Applications[J].IEEE Transactions on Dependable and Secure Computing (TDSC),2015,12(2):136-149.
[5] ZHANG W C,SUN H L,LIU X D,et al.Temporal QoS-Aware Web Service Recommendation via Non-negative Tensor Factorization[C]//International World Wide Web Conference (WWW).2014:585-595.
[6] SILIC M,DELAC G,SRBLJIC S.Prediction of Atomic WebServices Reliability for QoS-Aware Recommendation[J].IEEE Transactions on Services Computing,2015,8(3):425-438.
[7] LO W,YIN J,DENG S,et al.An Extended Matrix Factorization Approach for QoS Prediction in Service Selection[C]//IEEE Ninth International Conference on Services Computing.IEEE,2012:162-169.
[8] ZHENG Z,ZHANG Y,LYU M R.Investigating QoS of Real-World Web Services[J].IEEE Transactions on Services Computing,2014,7(1):32-39.
[9] ZHENG Z,ZHANG Y,LYU M R.Distributed QoS Evaluation for Real-World Web Services[C]//2010 IEEE International Conference on Web Services (ICWS).IEEE,2010:83-90.
[10] YANG Y,TANG S,XU Y,et al.An Approach to QoS-awareService Selection in Dynamic Web Service Composition[C]//Third International Conference on Networking and Services.ICNS,IEEE,2007:19-25.
[11] FANJIANG Y Y,SYU Y,MA S P,et al.An Overview and Classification of Service Description Approaches in Automated Ser-vice Composition Research[J].IEEE Transactions on Services Computing,2017,10(2):176-189.
[12] VARDHAN A V,BASHA M S S,DHAVACHELVAN P.An Overview of Web Services Composition Approaches[J].International Journal of Computer Applications,2011,29(8):10-15.
[13] CONSTANTINESCU I,FALTINGS B,BINDER W.Largescale,type-compatible service composition[C]//IEEE International Conference on Web Services.IEEE Computer Society,2004:5-6.
[14] THAKKER D,OSMAN T,AL-DABASS D.Knowledge-Intensive Semantic Web Services Composition[C]//Tenth International Conference on Computer Modeling & Simulation.IEEE,2008:673-678.
[15] AIELLO M,KHOURY E E,LAZOVIK A,et al.Optimal QoS-Aware Web Service Composition[C]//Joint IEEE Conference on E-Commerce Technology and IEEE Conference on Enterprise Computing,E-Commerce and E-Services IEEE Computer.2009:491-494.
[16] ALRIFAI M,RISSE T,NEJDL W.A hybrid approach for efficient Web service composition with end-to-end QoS constraints[J].ACM Transactions on the Web,2012,6(2):1-31.
[17] YAN Y,XU B,GU Z,et al.A QoS-Driven Approach for Semantic Service Composition[C]//IEEE Conference on Commerce & Enterprise Computing.IEEE,2009:523-526.
[18] ZHENG Z,ZHANG Y,LYU M R.Investigating QoS of Real-World Web Services[J].IEEE Transactions on Services Computing,2014,7(1):32-39.
[19] ZHENG Z,ZHANG Y,LYU M R.Distributed QoS Evaluation for Real-World Web Services[C]//2010 IEEE International Conference on Web Services (ICWS).IEEE,2010:83-90.
[20] CONSTANTINESCU I,FALTINGS B,BINDER W.Largescale,type-compatible service composition[C]//IEEE International Conference on Web Services.IEEE Computer Society,2004:506-513.
[21] ZHANG P Y,HUANG B,SUN Y M.Service semantic matching mechanism based on service combination[J].Journal of University of Electronic Science and Technology,2008,37(6):917-921.
[22] LI S Z,YANG G,YANG S X.A semantic Web service matching algorithm based on ontology concept similarity[J].Microcomputer and Applications,2009,28(15):57-60.
[23] ZHANG R L.Research on combination method based on Web service group model[J].Science and Technology Information,2012(30):285-285.
[24] WU B,WU J,DENG S,et al.Automatic Composition of Semantic Web Services An Enhanced State Space Search Approach[C]//International Conference on Service Sciences.IEEE Computer Society,2010,13/14:226-230.
[25] CORBIN H.Changing maternity service in a changing world[J].Public Health Nursing,1950,42(8):427.
[26] KAELBLING L P,LITTMAN M L,MOORE A W.Reinforcement Learning:A Survey[J].Artificial Intelligence Research,1996,4(1):237-285.
[27] GAO A,YANG D,TANG S,et al.Web service compositionusing markov decision processes[C]//Processing of the 6th International Conference on Advances in Web-Age Information Management.2005:308-319.
[28] OH S C,LEE D,KUMARA S R.Effective Web Service Composition in Diverse and Large-Scale Service Networks[J].IEEE Transactions on Services Computing,2008,1(1):15-32.
[29] REN L,WANG W,XU H.A Reinforcement Learning Method for Constraint-Satisfied Services Composition[J].IEEE Transactions on Services Computing,1939,13(5):786-800.
[30] WANG H,ZHOU X,ZHOU X,et al.Adaptive Service Composition Based on Reinforcement Learning[C]// ICSOC.LNCS,2010:92-107.
[31] WANG H,QIN W,XIN C,et al.Adaptive and Dynamic Service Composition via Multi-agent Reinforcement Learning[C]//IEEE International Conference on Web Services.2014:447-454.
[32] LI J J.Adaptive service combination combining QoS predictionand multi-agent reinforcement learning[D].Nanjiang:Southeast University,2018.
[33] WANG H,CHEN X,WU Q,et al.Integrating On-policy Reinforcement Learning with Multi-agent Techniques for Adaptive Service Composition[M] ∥Service-Oriented Computing.2014:154-168.
[34] ABOUHEAF M,GUEAIEB W.Reinforcement Learning Solution with Costate Approximation for a Flexible Wing Aircraft[C]//2018 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA).2018:1-6.
[35] ARDAGNA D,PERNICI B.Adaptive Service Composition inFlexible Processes[J].IEEE Transactions on Software Engineering,2007,33(6):369-384.
[36] LIN S Y,LIN G T,CHAO K M,et al.A Cost-Effective Planning Graph Approach for Large-Scale Web Service Composition[J].Mathematical Problems in Engineering,2012:1-21.
[37] HUA Z,YAN F,HUI G.A Web Service Composition Algo-rithm Based on Dependency Graph[J].Lecture Notes in Electrical Engineering,2012,113:1511-1518.
[38] FAN G D.Web service combination method based on FAHP and scheme map fusion[J].Computer Science,2020,47(1):270-275.
[1] 何志鹏, 李瑞琳, 牛北方. 高可用弹性宏基因组学计算平台[J]. 计算机科学, 2021, 48(1): 326-332.
[2] 于曼, 黄凯, 张翔. 基于微服务架构的ETC系统设计[J]. 计算机科学, 2020, 47(6A): 643-647.
[3] 吴文峻, 于鑫, 蒲彦均, 汪群博, 于笑明. 微服务时代的复杂服务软件开发[J]. 计算机科学, 2020, 47(12): 11-17.
[4] 范国栋,祝铭,李静,崔晓柳. 基于FAHP与规划图融合的Web服务组合方法[J]. 计算机科学, 2020, 47(1): 270-275.
[5] 徐飞, 王少昌, 杨卫霞. 基于博弈论的云资源调度算法[J]. 计算机科学, 2019, 46(6A): 295-299.
[6] 吴斌烽. 基于微服务架构的物联网中间件设计[J]. 计算机科学, 2019, 46(6A): 580-584.
[7] 孙明玮, 齐玉东. 基于云模型和改进灰色关联分析模型的网络服务质量综合评估[J]. 计算机科学, 2019, 46(5): 315-319.
[8] 刘明聪, 王娜, 周宁. 基于依赖分析的云组合服务信息流控制机制[J]. 计算机科学, 2019, 46(4): 189-196.
[9] 马小晋,饶国宾,许华虎. 云计算中任务调度研究的调查[J]. 计算机科学, 2019, 46(3): 1-8.
[10] 鲁城华, 寇纪淞. 求解Web服务组合QoS优化的多属性决策及自适应遗传算法[J]. 计算机科学, 2019, 46(2): 187-195.
[11] 张杰鑫, 庞建民, 张铮, 邰铭, 刘浩. 拟态构造Web服务器的服务质量量化方法[J]. 计算机科学, 2019, 46(11): 109-118.
[12] 李文海, 彭鑫, 丁丹, 向麒麟, 郭晓峰, 周翔, 赵文耘. 基于日志可视化分析的微服务系统调试方法[J]. 计算机科学, 2019, 46(11): 145-155.
[13] 周女琪, 周宇. 基于概率模型检测的Web服务组合多目标验证[J]. 计算机科学, 2018, 45(8): 288-294.
[14] 舒红梅, 谭良. 库操作系统的研究及其进展[J]. 计算机科学, 2018, 45(11): 37-44.
[15] 孙卫,黄金科. 基于QoS的分布式认知无线电网络多信道MAC协议[J]. 计算机科学, 2017, 44(Z6): 288-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 廖晓磊,赵涓涓. 基于改进自生成神经网络的肺部CT序列图像分割[J]. 计算机科学, 2017, 44(8): 296 -300 .
[2] 王海涛, 宋丽华, 向婷婷, 刘力军. 人工智能发展的新方向——人机物三元融合智能[J]. 计算机科学, 2020, 47(11A): 1 -5 .
[3] 陈训敏, 叶书函, 詹瑞. 基于多任务学习及由粗到精的卷积神经网络人群计数模型[J]. 计算机科学, 2020, 47(11A): 183 -187 .
[4] . 目录[J]. 计算机科学, 2020, 47(12): 0 .
[5] . 复杂系统的软件工程和需求工程专题前言[J]. 计算机科学, 2020, 47(12): 2 .
[6] 孟繁祎, 王莹, 于海, 朱志良. 复杂软件系统的重构技术:现状、问题与展望[J]. 计算机科学, 2020, 47(12): 1 -10 .
[7] 吴文峻, 于鑫, 蒲彦均, 汪群博, 于笑明. 微服务时代的复杂服务软件开发[J]. 计算机科学, 2020, 47(12): 11 -17 .
[8] 杨经纬, 魏子麒, 刘璘. 用户如何看待产品中的预测分析功能?——面向非功能性需求的调研报告[J]. 计算机科学, 2020, 47(12): 18 -24 .
[9] 贾经冬, 张筱曼, 郝璐, 谭火彬. 工业界需求工程关注点分析[J]. 计算机科学, 2020, 47(12): 25 -34 .
[10] 周凯, 任怡, 汪哲, 管剑波, 张芳, 赵言亢. 基于主题模型的Ubuntu操作系统缺陷报告的分类及分析[J]. 计算机科学, 2020, 47(12): 35 -41 .