计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 16-25.doi: 10.11896/jsjkx.200500095

• 智能化边缘计算* 上一篇    下一篇

物联网中多设备多服务器的移动边缘计算任务卸载技术综述

梁俊斌1,2, 田凤森1,2, 蒋婵3, 王天舒4   

  1. 1 广西大学计算机与电子信息学院 南宁 530004
    2 广西多媒体通信与网络技术重点实验室 南宁 530004
    3 广西大学行健文理学院 南宁 530005
    4 东软集团(南宁)有限公司 南宁 530007
  • 收稿日期:2020-05-21 修回日期:2020-11-04 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 田凤森(1246331577@qq.com)
  • 作者简介:liangjb2002@163.com
  • 基金资助:
    国家自然科学基金项目(61562005);广西重点研发计划项目(桂科AB19259006);广西自然科学基金项目(2019GXNSFAA185042,2018GXNSFBA281169)

Survey on Task Offloading Techniques for Mobile Edge Computing with Multi-devices and Multi-servers in Internet of Things

LIANG Jun-bin1,2, TIAN Feng-sen1,2, JIANG Chan3, WANG Tian-shu4   

  1. 1 School of Computer and Electronic Information,Guangxi University,Nanning 530004,China
    2 Guangxi Key Laboratory of Multimedia Communication and Network Technology,Nanning 530004,China
    3 Guangxi University Xingjian College of Science and Liberal Arts,Nanning 530005,China
    4 Neusoft Group (Nanning) Co.,Ltd.,Nanning 530007,China
  • Received:2020-05-21 Revised:2020-11-04 Online:2021-01-15 Published:2021-01-15
  • About author:LIANG Jun-bin,born in 1979,Ph.D,professor,Ph.D supervisor.His main research interests include wireless sensor networks,network deployment and optimization.
    TIAN Feng-sen,born in 1995,postgra-duate.His main research interests include wireless sensor networks and internet of things.
  • Supported by:
    National Natural Science Foundation of China(61562005),Major Project of Guangxi(guike AB19259006) and Natural Science Foundation of Guangxi(2019GXNSFAA185042,2018GXNSFBA281169).

摘要: 随着物联网(Internet of Things,IoT)技术的快速发展,出现了大量具有不同功能的设备(如多种带不同传感器的智能家居设备、移动智能交通设备、智能物流或仓储管理设备等),它们相互连接,被广泛应用于智能城市、智慧工厂等领域。然而,这些物联网设备的处理能力有限,很难满足延迟敏感、计算密集型应用的需求。移动边缘计算(Mobile Edge Computing,MEC)的出现有效解决了这一问题。物联网设备可以将任务卸载到MEC服务器上,借助它们完成相应的计算任务。这些服务器通常由网络运营商部署在网络边缘,即靠近用户端的网络接入层,用于汇聚用户网络的网络层面。某一段时间内,物联网设备可能处于多个MEC服务器的覆盖区域中,多个设备共享服务器有限的计算和通信资源。在这个复杂环境下,制定一个任务卸载和资源分配方案,使得任务完成的时延或物联网设备的能耗达到最优化,是一个NP-难问题。目前,已有许多工作对这一问题进行了研究,并取得了一定的成果,但在实际的应用中仍面临着一些问题。为了更深入地推进该领域的研究,文中对近几年的最新研究成果进行了分析、归纳和总结,对比分析了它们的优缺点,并对未来的工作进行了展望。

关键词: 物联网, 移动边缘计算, 任务卸载, 资源分配, 卸载决策

Abstract: With the rapid development of the Internet of Things (IoT) technology,there are a large number of devices with different functions (such as a variety of smart home equipment,mobile intelligent transportation devices,intelligent logistics or warehouse management equipment,etc.,with different sensors),which are connected to each other and widely used in intelligent cities,smart factories and other fields.However,the limited processing power of these IoT devices makes it difficult to meet the demand for delay-sensitive,computation-intensive applications.The emergence of mobile edge computing (MEC) effectively solves this problem.IoT devices can offload tasks to edge servers and use them to perform computing tasks.These servers are usually deployed by the network operator at the edge of the network,that is,the network access layer close to the client,which is used to aggregate the user network.At a certain time,IoT devices may be in the coverage area of multiple edge servers,and they share the limited computing and communication resources of the servers.In this complex environment,it is an NP-hard problem to formulate a task offloading and resource allocation scheme to optimize the delay of task completion or the energy consumption of IoT devices.At present,lots of work has been done on this issue and make some progress,but some problems still exist in the practical application.In order to further promote the research in this field,this paper analyzes and summarizes the latest achievements in recent years,compares their advantages and disadvantages,and looks forward to the future work.

Key words: Internet of things, Mobile edge computing, Task offloading, Resource allocation, Offloading decision

中图分类号: 

  • TP393
[1] ASHTON.That ‘Internet of Things' Thing[J].RFID Journal,2009,22(7):97-114.
[2] ASIR T R G,MANOHAR H L.Key Challenges and Success Factors in IoT-A Study on Impact of Data[C]//International Conference on Computer,Communication,and Signal Processing.IEEE,2018:1-5.
[3] CHENG S,CHEN Z,LI J,et al.Task Assignment Algorithms in Data Shared Mobile Edge Computing Systems[C]//the IEEE 39th International Conference on Distributed Computing Systems.IEEE,2019:997-1006.
[4] DINH H T,LEE C,NIYATOD.A survey of mobile cloud computing:architecture,applications,and approaches[J].Wireless Communications & Mobile Computing,2013,13(18):1587-1611.
[5] FERNANDO N,LOKE S W,RAHAYU W.Mobile cloud computing:A survey[J].Future Generation Computer Systems,2013,29(1):84-106.
[6] LIU X,CHEN Z.An Adaptive Multimedia Signal Transmission Strategy in Cloud-Assisted Vehicular Networks[C]//the 5th International Conference on Future Internet of Things and Cloud.IEEE,2017:220-226.
[7] VÁZQUEZ-GALLEGO F,VILALTA R,GARCÍA A.Demo:A Mobile Edge Computing-based Collision Avoidance System for Future Vehicular Networks[C]//IEEE Conference on Computer Communications Workshops.IEEE,2019:904-905.
[8] SALMAN O,ELHAJJ I.Edge computing enabling the Internet of Things[C]//the 2nd World Forum on Internet of Things.IEEE,2015:603-608.
[9] WANG S,ZAFER M,LEUNG K K.Online Placement of Multi-Component Applications in Edge Computing Environments[J].IEEE Access,2017,6:2514-2533.
[10] MAO Y,YOU C,ZHANG J.A Survey on Mobile Edge Computing:The Communication Perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358.
[11] GUAN X,WAN X,WANG J,et al.Mobility aware partition of MEC regions in wireless metropolitan area networks[C]//IEEE Conference on Computer Communications Workshops.IEEE,2018:1-2.
[12] SHI W,CAO J,ZHANG Q,et al.Edge Computing:Vision and Challenges[J].IEEE Internet of Things Journal,2016,3(5):637-646.
[13] PATEL M,NAUGHTON B,CHAN C.Mobile-edge computing introductory technical white paper[C]//White Paper,Mobile-edge Computing (MEC) Industry Initiative.2014:1089-7801.
[14] BARBAROSSA S,SARDELLITTI S,LORENZO P D.Communicating While Computing:Distributed mobile cloud computing over 5G heterogeneous networks[J].IEEE Signal Processing Magazine,2014,31(6):45-55.
[15] YI S,HAO Z,ZHANG Q,et al.LAVEA:Latency-Aware Video Analytics on Edge Computing Platform[C]//the 37th International Conference on Distributed Computing Systems.IEEE,2017:2573-2574.
[16] MACH P,BECVAR Z.Mobile Edge Computing:A Survey onArchitecture and Computation Offloading[J].IEEE Communications Surveys & Tutorials,2017,19(3):1628-1656.
[17] KUMAR K,LIU J,LUY H.A Survey of Computation Offloading for Mobile Systems[J].Mobile Networks & Applications,2013,18(1):129-140.
[18] ZHAN Y,GUO S,LI P,et al.A Deep Reinforcement Learning based Offloading Game in Edge Computing[J].IEEE Transactions on Computers,2020,69(6):883-893.
[19] WANG J,ZHAO L,LIU J,et al.Kato.Smart Resource Allocation for Mobile Edge Computing:A Deep Reinforcement Learning Approach[J/OL].IEEE Transactions on Emerging Topics in Computing.[2020-02-02].https://ieeexplore.ieee.org/document/8657791.
[20] SARDELLITTI S,SCUTARI G,BARBAROSSA S.Joint Optimization of Radio and Computational Resources for Multicell Mobile-Edge Computing[J].IEEE Transactions on Signal and Information Processing over Networks,2015,1(2):89-103.
[21] WEI Y,FAN L.A Survey on the Edge Computing for the Internet of Things[J].IEEE Access,2018,6:6900-6919.
[22] DONG S Q,LI H L,QU Y B,et al.Survey of Research on Computation Unloading Strategy in Mobile Edge Computing[J].Computer Science,2019,46(11):32-40.
[23] ZHAO H Y.Research on computation offloading in resource-constrained mobile-edge computing systems[D].Beijing:Beijing University of Posts and Telecommunications,2019.
[24] ABBAS N,ZHANG Y,TAHERKORDI A,et al.Mobile Edge Computing:A Survey[J].IEEE Internet of Things Journal,2018,5(1):450-465.
[25] LYU X,TIAN H,NI W,et al.Energy-Efficient Admission of Delay-Sensitive Tasks for Mobile Edge Computing[J].IEEE Transactions on Communications,2018,66(6):2603-2616.
[26] SUO H,LIU Z,WAN J,et al.Security and privacy in mobile cloud computing[C]//the 9th International Wireless Communications and Mobile Computing Conference.IEEE,2013:655-659.
[27] HE T,CIFTCIOGLU E N,WANG S,et al.Chan.Location Privacy in Mobile Edge Clouds:A Chaff-Based Approach[J].IEEE Journal on Selected Areas in Communications,2017,35(11):2625-2636.
[28] SHIRAZI S N,GOUGLIDIS A,FARSHAD A,et al.The Ex-tended Cloud:Review and Analysis of Mobile Edge Computing and Fog From a Security and Resilience Perspective[J].IEEE Journal on Selected Areas in Communications,2017,35(11):2586-2595.
[29] TRAN T X,POMPILI D.Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks[J].IEEE Transactions on Vehicular Technology,2019,68(1):856-868.
[30] OJIMA T,FUJII T.Resource management for mobile edge computing using user mobility prediction[C]//International Conference on Information Networking.IEEE,2018:718-720.
[31] OUYANG T,ZHOU Z,CHEN X.Follow Me at the Edge:Mobility-Aware Dynamic Service Placement for Mobile Edge Computing[J].IEEE Journal on Selected Areas in Communications,2018,36(10):2333-2345.
[32] DINH T Q,TANG J,LA Q D,et al.Offloading in Mobile Edge Computing:Task Allocation and Computational Frequency Scaling[J].IEEE Transactions on Communications,2017,65(8):3571-3584.
[33] FAN W,LIU Y,TANG B,et al.Computation Offloading Based on Cooperations of Mobile Edge Computing-Enabled Base Stations[J].IEEE Access,2018,6:22622-22633.
[34] MOGI R,NAKAYAMA T,ASAKA T.Load Balancing Method for IoT Sensor System Using Multi-access Edge Computing[C]//The Sixth International Symposium on Computing and Networking Workshops.IEEE,2018:75-78.
[35] KAEWPUANG R,NIYATO D,WANG P,et al.A Framework for Cooperative Resource Management in Mobile Cloud Computing[J].IEEE Journal on Selected Areas in Communications,2013,31(12):2685-2700.
[36] YU R,DING J,MAHARJAN S,et al.Decentralized and Optimal Resource Cooperation in Geo-Distributed Mobile Cloud Computing[J].IEEE Transactions on Emerging Topics in Computing,2018,6(1):72-84.
[37] FAN Q,ANSARI N.Towards Workload Balancing in Fog Computing Empowered IoT[J].IEEE Transactions on Network Science and Engineering,2020,7(1):253-262.
[38] DONG Y,XU G,DING Y,et al.A ‘Joint-Me' Task Deployment Strategy for Load Balancing in Edge Computing[J].IEEE Access,2019,7:99658-99669.
[39] YANG L,YAO H,WANG J,et al.Multi-UAV Enabled Load-Balance Mobile Edge Computing for IoT Networks[J/OL].IEEE Internet of Things Journal.[2020-02-16].https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8981986.
[40] SAMANTA A,LI Y.Time-to-think:Optimal economic considerations in mobile edge computing[C]//IEEE Conference on Computer Communications Workshops.IEEE,2018:1-2.
[41] WANG Q,GUO S,LIU J,et al.Profit Maximization Incentive Mechanism for Resource Providers in Mobile Edge Computing[J/OL].IEEE Transactions on Services Computing.[2020-02-17].https://ieeexplore.ieee.org/document/8744396.
[42] SUNDAR S,LIANG B.Offloading Dependent Tasks with Communication Delay and Deadline Constraint[C]//Conference on Computer Communications.IEEE,2018:37-45.
[43] FENG W,YANG C,ZHOU X.Multi-User and Multi-Task Offloading Decision Algorithms Based on Imbalanced Edge Cloud[J].IEEE Access,2019,7:95970-95977.
[44] ZHANG K,MAO Y,LENG S,et al.Delay constrained offloading for Mobile Edge Computing in cloud-enabled vehicular networks[C]//the 8th International Workshop on Resilient Networks Design and Modeling.IEEE,2016:288-294.
[45] YU R,HUANG X,KANG J.Cooperative Resource Manage-ment in Cloud-Enabled Vehicular Networks[J].IEEE Transactions on Industrial Electronics,2015,62(12):7938-7951.
[46] ZHANG Y,ZHANG K,CAO J Y.Internet of vehicles empowered by edge intelligence[J].Chinese Journal on Internet of Things,2018,2(4):44-52.
[47] ZHOU Z,CHEN X,LI E,et al.Zhang.Edge Intelligence:Paving the Last Mile of Artificial Intelligence With Edge Computing[J].Proceedings of the IEEE,2019,107(8):1738-1762.
[48] YU S,WANG X,LANGAR R.Computation offloading for mobile edge computing:A deep learning approach[C]//the 28th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications.IEEE,2017:1-6.
[49] LIU X,YU J,WANG J,et al.Resource Allocation with Edge Computing in IoT Networks via Machine Learning[J].IEEE Internet of Things Journal,2020,7(4):3415-3426.
[50] LIU J,MAO Y,ZHANG J,et al.Delay-optimal computation task scheduling for mobile-edge computing systems[C]//IEEE International Symposium on Information Theory.IEEE,2016:1451-1455.
[51] JIA M,CAO J,YANG L.Heuristic offloading of concurrenttasks for computation-intensive applications in mobile cloud computing [C]//IEEE Conference on Computer Communications Workshops.IEEE,2014:352-357.
[52] XU X,LI D,DAI Z,et al.A Heuristic Offloading Method for Deep Learning Edge Services in 5G Networks[J].IEEE Access,2019,7:67734-67744.
[53] SHU C,ZHAO Z,HAN Y,et al.Multi-User Offloading for Edge Computing Networks:A Dependency-Aware and Latency-Optimal Approach[J].IEEE Internet of Things Journal,2020,7(3):1678-1689.
[54] WU Y,QIAN L P,NI K,et al.Delay-Minimization Nonorthogonal Multiple Access Enabled Multi-User Mobile Edge Computation Offloading[J].IEEE Journal of Selected Topics in Signal Processing,2019,13(3):392-407.
[55] DAB B,AITSAADI N,LANGAR R.Joint Optimization of Offloading and Resource Allocation Scheme for Mobile Edge Computing[C]//IEEE Wireless Communications and Networking Conference.IEEE,2019:1-7.
[56] ZHAO P,TIAN H,QIN C,et al.Energy-Saving Offloading by Jointly Allocating Radio and Computational Resources for Mobile Edge Computing[J].IEEE Access,2017,5:11255-11268.
[57] ZHANG P,YANG J,FAN R.Energy-efficient Mobile EdgeComputation Offloading with Multiple Base Stations[C]//The 15th International Wireless Communications & Mobile Computing Conference.IEEE,2019:255-259.
[58] ZHANG K,MAO Y,LENG S.Energy-Efficient Offloading for Mobile Edge Computing in 5G Heterogeneous Networks[J].IEEE Access,2016,4:5896-5907.
[59] YANG L,ZHANG H,LI M,et al.Mobile Edge Computing Empowered Energy Efficient Task Offloading in 5G[J].IEEE Transactions on Vehicular Technology,2018,67(7):6398-6409.
[60] WANG F,XU J,DING Z.Optimized Multiuser Computation Offloading with Multi-Antenna NOMA[C]//IEEE Globecom Workshops.IEEE,2017:1-7.
[61] WANG F,XU J,DING Z.Multi-Antenna NOMA for Computation Offloading in Multiuser Mobile Edge Computing Systems[J].IEEE Transactions on Communications,2019,67(3):2450-2463.
[62] LIN Z,LAI Y,GAO X,et al.Data gathering in urban vehicular network based on daily movement patterns[C]//the 11th International Conference on Computer Science & Education.IEEE,2016:641-646.
[63] JAISWAL R K,JAIDHAR C D.Location prediction algorithm for a nonlinear vehicular movement in VANET using extended Kalman filter[J].Wireless Networks,2017,23(7):2021-2036.
[64] ZHANG C,ZHENG Z.Task migration for mobile edge computing using deep reinforcement learning[J].Future Generation Computer Systems,2019,96:111-118.
[65] ZHANG J,GUO H,LIU J,et al.Task Offloading in Vehicular Edge Computing Networks:A Load-Balancing Solution[J].IEEE Transactions on Vehicular Technology,2020,69(2):2092-2104.
[66] BOUKERCHE A,SOTO V.An Efficient Mobility-Oriented Retrieval Protocol for Computation Offloading in Vehicular Edge Multi-Access Network[J].IEEE Transactions on Intelligent Transportation Systems,2018,21(6):2675-2688.
[67] WANG S,GUO Y,ZHANG N,et al.Delay-aware Microservice Coordination in Mobile Edge Computing:A Reinforcement Learning Approach [J/OL].IEEE Transactions on Mobile Computing.[2020-04-20].https://ieeexplore.ieee.org/document/8924682.
[68] LIANG L,XIAO J,REN Z,et al.Particle Swarm Based Service Migration Scheme in the Edge Computing Environment[J].IEEE Access,2020,8:45596-45606.
[69] XU X,GU R,DAI F,et al.Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing[J].Wireless Networks,2020,26(3):1611-1629.
[70] DING Y,LIU C,ZHOU X,et al.A Code-Oriented Partitioning Computation Offloading Strategy for Multiple Users and Multiple Mobile Edge Computing Servers[J].IEEE Transactions on Industrial Informatics,2020,16(7):4800-4810.
[71] YANG T,FENG H,GAO S,et al.Two-Stage Offloading Optimization for Energy-Latency Tradeoff With Mobile Edge Computing in Maritime Internet of Things[J].IEEE Internet of Things Journal,2020,7(7):5954-5963.
[72] LI S L,DU J B,ZHAI D S,et al.Yu.Task offloading,load balancing,and resource allocation in MEC networks[J].IET Communications,2020,14(9):1451-1458.
[73] HUANG M,LIU W,WANG T,et al.A Cloud-MEC Collaborative Task Offloading Scheme With Service Orchestration[J].IEEE Internet of Things Journal,2020,7(7):5792-5805.
[74] LIAO R F,WEN H,WU J,et al.Security Enhancement for Mobile Edge Computing Through Physical Layer Authentication[J].IEEE Access,2019,7:116390-116401.
[75] JIA X,HE D,KUMAR N,et al.A Provably Secure and Efficient Identity-Based Anonymous Authentication Scheme for Mobile Edge Computing[J].IEEE Systems Journal,2020,14(1):560-571.
[76] ABUARQOUB A.D-FAP:Dual-Factor Authentication Protocol for Mobile Cloud Connected Devices[J].Journal of Sensor and Actuator Networks,2020,9(1):1.
[77] FENG J,YU F R,PEI Q,et al.Cooperative Computation Offloading and Resource Allocation for Blockchain-Enabled Mobile Edge Computing:A Deep Reinforcement Learning Approach[J].IEEE Internet of Things Journal,2019,7(7):6214-6228.
[78] XU X,ZHANG X,GAO H,et al.BeCome:Blockchain-Enabled Computation Offloading for IoT in Mobile Edge Computing[J].IEEE Transactions on Industrial Informatics,2020,16(6):4187-4195.
[79] WANG S,YE D,HUANG X,et al.Consortium Blockchain for Secure Resource Sharing in Vehicular Edge Computing:A Contract-based Approach[J/OL].IEEE Transactions on Network Science and Engineering.[2020-08-14].https://ieeexplore.ieee.org/document/9123565.
[80] LIAO H,MU Y,ZHOU Z,et al.Blockchain and Learning-Based Secure and Intelligent Task Offloading for Vehicular Fog Computing[J/OL].IEEE Transactions on Intelligent Transportation Systems.[2020-08-14].https://ieeexplore.ieee.org/document/9145846.
[1] 刘通, 方璐, 高洪皓. 边缘计算中任务卸载研究综述[J]. 计算机科学, 2021, 48(1): 11-15.
[2] 于天琪, 胡剑凌, 金炯, 羊箭锋. 基于移动边缘计算的车载CAN网络入侵检测方法[J]. 计算机科学, 2021, 48(1): 34-39.
[3] 毛莺池, 周彤, 刘鹏飞. 基于延迟接受的多用户任务卸载策略[J]. 计算机科学, 2021, 48(1): 49-57.
[4] 高基旭, 王珺. 一种基于遗传算法的多边缘协同计算卸载方案[J]. 计算机科学, 2021, 48(1): 72-80.
[5] 杨紫淇, 蔡英, 张皓晨, 范艳芳. 基于负载均衡的VEC服务器联合计算任务卸载方案[J]. 计算机科学, 2021, 48(1): 81-88.
[6] 郦睿翔, 毛莺池, 郝帅. 基于近似匹配的移动边缘计算缓存管理方法[J]. 计算机科学, 2021, 48(1): 96-102.
[7] 郭飞雁, 唐兵. 基于用户延迟感知的移动边缘服务器放置方法[J]. 计算机科学, 2021, 48(1): 103-110.
[8] 马峻岩, 李易, 李尚荣, 张特, 张颖. HATBED:分布式硬件辅助追踪物联网测试平台[J]. 计算机科学, 2020, 47(9): 258-264.
[9] 王国澎, 杨剑新, 尹飞, 蒋生健. 负载均衡的处理器运算资源分配方法[J]. 计算机科学, 2020, 47(8): 41-48.
[10] 杨威超, 郭渊博, 李涛, 朱本全. 基于流量指纹的物联网设备识别方法和物联网安全模型[J]. 计算机科学, 2020, 47(7): 299-306.
[11] 胡锦天, 王高才, 徐晓桐. 移动边缘计算中具有能耗优化的任务迁移策略[J]. 计算机科学, 2020, 47(6): 260-265.
[12] 谢英英, 石涧, 黄硕康, 雷凯. 面向5G的命名数据网络物联网研究综述[J]. 计算机科学, 2020, 47(4): 217-225.
[13] 张继荣, 贾晨晴. 基于终端分组的非正交随机接入资源分配方案[J]. 计算机科学, 2020, 47(4): 243-248.
[14] 田贤忠, 姚超, 赵晨, 丁军. 一种面向5G网络的移动边缘计算卸载策略[J]. 计算机科学, 2020, 47(11A): 286-290.
[15] 张华伟, 谢东风, 邹艳芳, 胡永辉. 一种QoS保证的多跳动态资源分配协议[J]. 计算机科学, 2020, 47(11A): 310-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151 .
[3] 郑秀林,宋海燕,付伊鹏. MORUS-1280-128算法的区分分析[J]. 计算机科学, 2018, 45(4): 152 -156 .
[4] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[5] 朱淑芹,王文宏,李俊青. 针对基于感知器模型的混沌图像加密算法的选择明文攻击[J]. 计算机科学, 2018, 45(4): 178 -181 .
[6] 徐周波,张鵾,宁黎华,古天龙. 图编辑距离概述[J]. 计算机科学, 2018, 45(4): 11 -18 .
[7] 瞿中,赵从梅. 一种抗遮挡的自适应尺度目标跟踪算法[J]. 计算机科学, 2018, 45(4): 296 -300 .
[8] 李键红,吴亚榕,吕巨建. 基于组稀疏表示的在线单帧图像超分辨率算法[J]. 计算机科学, 2018, 45(4): 312 -318 .
[9] 邓霞, 常乐, 梁俊斌, 蒋婵. 移动机会网络组播路由的研究进展[J]. 计算机科学, 2018, 45(6): 19 -26 .
[10] 项英倬, 谭菊仙, 韩杰思, 石浩. 图匹配技术研究[J]. 计算机科学, 2018, 45(6): 27 -31 .