计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 190-196.doi: 10.11896/jsjkx.200600076
赵佳琦1,2,3, 王瀚正1,2, 周勇1,2, 张迪1,2, 周子渊1,2
ZHAO Jia-qi1,2,3, WANG Han-zheng1,2, ZHOU Yong1,2, ZHANG Di1,2, ZHOU Zi-yuan1,2
摘要: 遥感图像描述生成是同时涉及计算机视觉和自然语言处理领域的热门研究话题,其主要工作是对于给定的图像自动地生成一个对该图像的描述语句。文中提出了一种基于多尺度与注意力特征增强的遥感图像描述生成方法,该方法通过软注意力机制实现生成单词与图像特征之间的对齐关系。此外,针对遥感图像分辨率较高、目标尺度变化较大的特点,还提出了一种基于金字塔池化和通道注意力机制的特征提取网络(Pyramid Pool and Channel Attention Network,PCAN),用于捕获遥感图像多尺度以及局部跨通道交互信息。将该模型提取到的图像特征作为描述生成阶段软注意力机制的输入,通过计算得到上下文信息,然后将该上下文信息输入至LSTM网络中,得到最终的输出序列。在RSICD与MSCOCO数据集上对PCAN及软注意力机制进行有效性实验,结果表明,PCAN及软注意力机制的加入能够提升生成语句的质量,实现单词与图像特征之间的对齐。通过对软注意力机制的可视化分析,提高了模型结果的可信度。此外,在语义分割数据集上进行实验,结果表明所提PCAN对于语义分割任务同样具有有效性。
中图分类号:
[1] LIU J Q,LI Z,ZHANG X Y.Review of Maritime Target Detection in Visible Bands of Optical Remote Sensing Images[J].Computer Science,2020,47(3):116-123. [2] YIN Y,HUANG H,ZHANG Z X.Research on Ship Detection Technology Based on Optical Remote Sensing Image[J].Computer Science,2019,46(3):82-87. [3] CUI L,ZHANG P,CHE J.Overview of Deep Neural Network Based Classification Algorithms for Remote Sensing Images[J].Computer Science,2018,45(S1):50-53. [4] XU K,BA J,KIROS R,et al.Show,attend and tell:Neural image caption generation with visual attention[C]//International Conference on Machine Learning.2015:2048-2057. [5] MAO J,XU W,YANG Y,et al.Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN)[J].arXiv:1412.6632,2014. [6] LI J W,MONROE W,JURAFSKY D.Understanding neuralnetworks through representation erasure[J].arXiv:1612.08220,2016. [7] JI S L,LI J F,DU T Y,et al.A Survey on Techniques,Applications and Security of Machine Learning Interpretability[J].Journal of Computer Research and Development,2019,56(10):2071-2096. [8] KULKARNI G,PREMRAJ V,ORDONEZ V,et al.BabyTalk:Understanding and Generating Simple Image Descriptions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(12):2891-2903. [9] SUN C,GAN C,NEVATIA R,et al.Automatic Concept Dis-covery from Parallel Text and Visual Corpora[C]// International Conference on Computer Vision.2015:2596-2604. [10] LU J S,XIONG C M,PARIKH D,et al.Knowing When to Look:Adaptive Attention via a Visual Sentinel for Image Captioning[C]// 2017 IEEE Conference on Computer vision and pattern recognition.2017:3242-3250. [11] ANDERSON P,HE X,BUEHLER C,et al.Bottom-Up andTop-Down Attention for Image Captioning and Visual Question Answering[C]// Computer Vision and Pattern Recognition (CVPR).IEEE.2018:6077-6086. [12] DAS A,KOTTUR S,GUPTA K,et al.Visual Dialog[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017. [13] CHAUDHARI S,POLATKAN G,RAMANATH R,et al.An Attentive Survey of Attention Models [J].arXiv:1904.02874,2019. [14] ROSENBLATT F.The Perceptron:A Probabilistic Model for Information Storage and Organization in the Brain[J].Psychological Review,1958,65(6):386-408. [15] MNIH V,HEESS N,GRAVES A,et al.Recurrent Models of Visual Attention[C]//Neural Information Processing Systems.2014:2204-2212. [16] CHEN L,YANG Y,WANG J,et al.Attention to Scale:Scale-Aware Semantic Image Segmentation[C]// Computer Vision and Pattern Recognition.2016:3640-3649. [17] BAHDANAU D,CHO K,BENGIO Y,et al.Neural Machine Translation by Jointly Learning to Align and Translate[J]. arXiv:1409.0473,2014. [18] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need [C]//Proc of the 31st Int Conf on Neural Information Processing Systems.USA:Curran Associates Inc.,2017:6000-6010. [19] YANG Z,YANG D,DYER C,et al.Hierarchical Attention Networks for Document Classification[C]//North American Chapter of the Association for Computational Linguistics.2016:1480-1489. [20] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [21] ZAREMBA W,SUTSKEVER I,VINYALS O.Recurrent Neural Network Regularization[J].arXiv:1409.2329,2014. [22] CHENG G,HAN J,LU X.Remote sensing image scene classification:Benchmark and state of the art[J].Proceedings of the IEEE,2017,105(10):1865-1883. [23] KISHORE P,SALIM R,TODD W,et al.BLEU:a Method for Automatic Evaluation of Machine Translation[C]// Proceedings of the 40th Annual Meeting on Association for Computational Linguistics.2002:311-318. [24] DENKOWSKI M,LAVIE A.Meteor Universal:Language Specific Translation Evaluation for Any Target Language[C]// Proceedings of the Ninth Workshop on Statistical Machine Translation.2014:376-380. [25] LIN C,HOVY E.Automatic evaluation of summaries using N-gram co-occurrence statistics[C]// North American Chapter of the Association for Computational Linguistics.2003:71-78. [26] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [27] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [28] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:801-818. [29] YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:325-341. [30] YUAN Y,WANG J.Ocnet:Object context network for scene parsing[J].arXiv:1809.00916,2018. [31] HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:603-612. [32] ZHAO H,ZHANG Y,LIU S,et al.Psanet:Point-wise spatial attention network for scene parsing[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:267-283. |
[1] | 刘洋, 金忠. 一种结合非局部和多区域注意力机制的细粒度图像识别方法[J]. 计算机科学, 2021, 48(1): 197-203. |
[2] | 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232. |
[3] | 张玉帅, 赵欢, 李博. 基于BERT和BiLSTM的语义槽填充[J]. 计算机科学, 2021, 48(1): 247-252. |
[4] | 王润正, 高见, 黄淑华, 仝鑫. 基于知识蒸馏的恶意代码家族检测方法[J]. 计算机科学, 2021, 48(1): 280-286. |
[5] | 崔彤彤, 王桂玲, 高晶. 基于1DCNN-LSTM的船舶轨迹分类方法[J]. 计算机科学, 2020, 47(9): 175-184. |
[6] | 潘祖江, 刘宁, 张伟, 王建勇. 基于层次注意力机制的多任务疾病进展模型[J]. 计算机科学, 2020, 47(9): 185-189. |
[7] | 胡鹏程, 刁力力, 叶桦, 仰燕兰. 基于人工特征与深度特征的DGA域名检测算法[J]. 计算机科学, 2020, 47(9): 311-317. |
[8] | 赵威, 林煜明, 王超强, 蔡国永. 基于依赖联系分析的观点词对协同抽取[J]. 计算机科学, 2020, 47(8): 164-170. |
[9] | 刘燕, 温静. 基于注意力机制的复杂场景文本检测[J]. 计算机科学, 2020, 47(7): 135-140. |
[10] | 吕亿林, 田宏韬, 高建伟, 万怀宇. 结合百科知识与句子语义特征的关系抽取方法[J]. 计算机科学, 2020, 47(6A): 40-44. |
[11] | 陈晋音, 蒋焘, 郑海斌. 基于信噪比分级的信号调制类型识别[J]. 计算机科学, 2020, 47(6A): 310-317. |
[12] | 倪海清, 刘丹, 史梦雨. 基于语义感知的中文短文本摘要生成模型[J]. 计算机科学, 2020, 47(6): 74-78. |
[13] | 黄勇韬, 严华. 结合注意力机制与特征融合的场景图生成模型[J]. 计算机科学, 2020, 47(6): 133-137. |
[14] | 朱威, 王图强, 陈悦峰, 何德峰. 基于多尺度残差网络的对象级边缘检测算法[J]. 计算机科学, 2020, 47(6): 144-150. |
[15] | 张志扬, 张凤荔, 陈学勤, 王瑞锦. 基于分层注意力的信息级联预测模型[J]. 计算机科学, 2020, 47(6): 201-209. |
|