计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 124-129.doi: 10.11896/jsjkx.200600096
谭琪, 张凤荔, 王婷, 王瑞锦, 周世杰
TAN Qi, ZHANG Feng-li, WANG Ting, WANG Rui-jin, ZHOU Shi-jie
摘要: 在社交网络中,通过追踪极少数的强影响力用户,可以实现宏观管控信息的传播过程,而用户影响力是一种无法预判的后验信息,仅能依靠有关特征来确定。因此,提出了一种融入结构度中心性的社交网络用户影响力评估(Structural-Degree-Centrality User Influence Rank,SDRank)算法来识别强影响力用户。该算法基于PageRank算法,引入了结构度中心性,结合了加入时间与平均转发数的调节因子,进而计算出用户的影响力值。相较于其他的现有算法,SDRank算法仅从用户本身的行为角度出发,不需要诸如个人标签、粉丝等存在伪造风险与缺省可能的具体信息,也不必挖掘传播内容的潜在信息,适用性更广泛。以微博用户的级联转发数据集作为实验对象,对被转发数排名Top-K用户的平均转发数等相关结果进行了可视化分析,探讨了用户转发行为在社交网络信息传播中的作用。在实验过程中,所提算法与PageRank,TrustRank算法相比,准确率、召回率和F1-measure值都有了一定的提高,验证了SDRank算法的有效性。
中图分类号:
[1]ILIE V,TUREL O.Manipulating user resistance to large-scale information systems through influence tactics[J].Information &Management,2019,57(3):103178. [2]ZAREIE A,SHEIKHAHMADI A,JALILI M.Identification of influential users in social networks based on users’ interest[J].Information Sciences,2019,493:217-231. [3]HUANG X Y,YANG A Z,LIU X Y,et al.An Improved In-fluence assessment algorithm for Weibo users[J].Computer Engineering,2019,45(12):294-299. [4]JU C H,ZHAO K D,BAO F G.Influence Strength Calculation Model of Social Network Users integrating Closeness Centrality and Credit[J].Chinese Journal of Intelligence,2019,38(2):170-177. [5]CHENG S,JIANG C,REN K.The Influence of the Central Path Media Blog Post Information Characteristics on User Behavior[C]//Institute of Management Science and Industrial Enginee-ring:Computer Science and Electronic Technology International Society.2019:8. [6]WEI J M,HE H.Research on user Behavior and Influence Assessment Algorithm in Social Network[J].Intelligent Computer and Application,2019,9(2):162-167. [7]ZHANG C,TANG K,PENG Y B.Fuzzy Comprehensive Evalua-tion of social Network Users’ Influence[J].Computer System Application,2017,26(12):18-24. [8]WANG Z F,ZHU J Y,ZHENG Z Y,et al.Influence analysis of Users in Weibo Community based on RC Model[J].Computer Science,2017,44(3):254-258,282. [9]XING Y F,WANG X W,HAN X W,et al.Research on in-fluence of network nodes in new media environment based on information entropy-case study of WeChat public account[J].Books and Intelligence Work,2018,62(5):76-86. [10]ZHANG J D,YANG Y.Research on influence MeasurementModel of Mobile Social Network Users based on interactive behavior and emotional tendency[J].Intelligence Theory and Practice,2019,42(1):112. [11]HAN Z M,MAO R,ZHENG C Y,et al.An effective dynamic network Node influence model[J].Computer Application Research,2019(7):1960-1964. [12]PAGE L,BRIN S,MOTWANI R,et al.The pagerank citation ranking:Bringing order to the web[R].Stanford InfoLab,1999. [13]KWAK H,LEE C,PARK H,et al.What Is Twitter,a SocialNetwork or a News Media?[C]//Proceedings of the 19th International Conference on World Wide Web.2010. [14]SU S Q,YANG K,ZHANG N.Comparative Study of Leader-Rank and PageRank Algorithms[J].Information Technology,2015(4):8-11. [15]WEI J D,QIN X Z,JIA Z H,et al.User Influence Evaluation Model based on user behavior and Structural hole[J].Modern Electronic Technology,2019(5):39. [16]WANG J,YU W,HU Y H,et al.Social Network InfluenceMaximization Algorithm based on 3-Layer Centrality[J].Computer Science,2014,41(1):59-63. [17]CHEN X L.Research on Social Network Influence Maximization Algorithm and Its Propagation Model[D].Harbin:Harbin Engineering University,2016:20-22. [18]YANG S X,LIANG W,ZHU K L.Influence measurementmethod of nodes in complex network based on three-level neighbors [J].Journal of Electronics and Information Technology,2020,42. [19]BACHA R E,ZIN T T.A Survey on Influence and Information Diffusion in Twitter Using Big Data Analytics[C]//Internatio-nal Conference on Big Data Analysis and Deep Learning Applications.Singapore:Springer,2018:39-47. [20]YU J.Empirical Analysis on the Characteristics of Users’ in-fluence in the Process of Microblog communication [J].Journal of Intelligence,2013(8):61-65. [21]LOU S,ZHOU M,QU Q.Analysis of User Influence of Social Investment Platform-Taking Snowball Network as an Example[J].Service Science and Mangement,2019,8(6):251-262. [22]CAO Q,SHEN H W,CEN K T,et al.DeepHawkes:Bridgingthe Gap between Prediction and Understanding of Information Cascades[C]//CIKM 2017.2017:1149-1158. [23]ZHANG N,RAO J,ZHANG S Q,et al.Power-law distribution phenomenon of sina weibo forwarding number[J].Computer Age,2015(3):33-35. [24]GYONGYI Z,GARCIAMOLINA H,PEDERSEN J.Combating web spam with trustrank[C]//Proceedings of the 2004 International Conference on Very Large Data Bases (VLDB).Toronto,2004:576-587. [25]ZHAO J Q,GUI X L,TIAN F.A New Method of Identifying Influential Users in the Micro-Blog Networks[J].IEEE Access,2017,5:3008-3015. |
[1] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[2] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[3] | 魏鹏, 马玉亮, 袁野, 吴安彪. 用户行为驱动的时序影响力最大化问题研究 Study on Temporal Influence Maximization Driven by User Behavior 计算机科学, 2022, 49(6): 119-126. https://doi.org/10.11896/jsjkx.210700145 |
[4] | 余皑欣, 冯秀芳, 孙静宇. 结合物品相似性的社交信任推荐算法 Social Trust Recommendation Algorithm Combining Item Similarity 计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217 |
[5] | 畅雅雯, 杨波, 高玥琳, 黄靖云. 基于SEIR的微信公众号信息传播建模与分析 Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR 计算机科学, 2022, 49(4): 56-66. https://doi.org/10.11896/jsjkx.210900169 |
[6] | 左园林, 龚月姣, 陈伟能. 成本受限条件下的社交网络影响最大化方法 Budget-aware Influence Maximization in Social Networks 计算机科学, 2022, 49(4): 100-109. https://doi.org/10.11896/jsjkx.210300228 |
[7] | 郭磊, 马廷淮. 基于好友亲密度的用户匹配 Friend Closeness Based User Matching 计算机科学, 2022, 49(3): 113-120. https://doi.org/10.11896/jsjkx.210200137 |
[8] | 王剑, 王玉翠, 黄梦杰. 社交网络中的虚假信息:定义、检测及控制 False Information in Social Networks:Definition,Detection and Control 计算机科学, 2021, 48(8): 263-277. https://doi.org/10.11896/jsjkx.210300053 |
[9] | 张人之, 朱焱. 基于主动学习的社交网络恶意用户检测方法 Malicious User Detection Method for Social Network Based on Active Learning 计算机科学, 2021, 48(6): 332-337. https://doi.org/10.11896/jsjkx.200700151 |
[10] | 鲍志强, 陈卫东. 基于最大后验估计的谣言源定位器 Rumor Source Detection in Social Networks via Maximum-a-Posteriori Estimation 计算机科学, 2021, 48(4): 243-248. https://doi.org/10.11896/jsjkx.200400053 |
[11] | 张少杰, 鹿旭东, 郭伟, 王世鹏, 何伟. 供需匹配中的非诚信行为预防 Prevention of Dishonest Behavior in Supply-Demand Matching 计算机科学, 2021, 48(4): 303-308. https://doi.org/10.11896/jsjkx.200900090 |
[12] | 袁得嵛, 陈世聪, 高见, 王小娟. 基于斯塔克尔伯格博弈的在线社交网络扭曲信息干预算法 Intervention Algorithm for Distorted Information in Online Social Networks Based on Stackelberg Game 计算机科学, 2021, 48(3): 313-319. https://doi.org/10.11896/jsjkx.200400079 |
[13] | 谭琪, 张凤荔, 张志扬, 陈学勤. 社交网络用户影响力的建模方法 Modeling Methods of Social Network User Influence 计算机科学, 2021, 48(2): 76-86. https://doi.org/10.11896/jsjkx.191200102 |
[14] | 郁友琴, 李弼程. 基于多粒度文本特征表示的微博用户兴趣识别 Microblog User Interest Recognition Based on Multi-granularity Text Feature Representation 计算机科学, 2021, 48(12): 219-225. https://doi.org/10.11896/jsjkx.201100128 |
[15] | 马理博, 秦小麟. 话题-位置-类别感知的兴趣点推荐 Topic-Location-Category Aware Point-of-interest Recommendation 计算机科学, 2020, 47(9): 81-87. https://doi.org/10.11896/jsjkx.191100120 |
|