计算机科学 ›› 2021, Vol. 48 ›› Issue (8): 157-161.doi: 10.11896/jsjkx.200700134
刘帅1, 芮挺2, 胡育成1, 杨成松2, 王东2
LIU Shuai1, RUI Ting2, HU Yu-cheng1, YANG Cheng-song2, WANG Dong2
摘要: 基于特征点法的视觉里程计中,光照和视角变化会导致特征点提取不稳定,进而影响相机位姿估计精度,针对该问题,提出了一种基于深度学习SuperGlue匹配算法的单目视觉里程计建模方法。首先,通过SuperPoint检测器获取特征点,并对得到的特征点进行编码,得到包含特征点坐标和描述子的向量;然后,通过注意力GNN网络生成更具代表性的描述子,并创建M×N型得分分配矩阵,采用Sinkhorn算法求解最优得分分配矩阵,从而得到最优特征匹配;最后,根据最优特征匹配进行相机位姿恢复,采用最小化投影误差法进行相机位姿优化。实验结果表明,在无后端优化的条件下,该算法与基于ORB或SIFT算法的视觉里程计相比,不仅对视角和光线变化更鲁棒,而且其绝对轨迹误差和相对位姿误差的精度均有显著提升,进一步验证了基于深度学习的SuperGlue匹配算法在视觉SLAM中的可行性和优越性。
中图分类号:
[1]LU Y,SONG D.Visual navigation using heterogeneous land-marks and unsupervised .geo-metric constraints [J].IEEE Transactions on Robotics,2015,31(3):736-749. [2]CHEN J W,BAUTEMBACH D,IZADI S.Scalable real-timevolumetric sur-face reconstruction[J].ACM Transactions on Graphics,2013,32(4):1-16. [3]ABATE A F,NAPPI M,RICCIO D,et al.2D and 3D face recognition:a survey [J].Pattern Recognition Letters,2007,28(14):1885-1906. [4]JIA K,CHAN T H,ZENG Z,et al.ROML:A robust feature correspondence approach for matching objects in a set of images [J].International Journal of Computer Vision,2016,117(2):173-197. [5]SONG X,ZHAO X,HU H W,et al.EdgeStereo:a context integrated residual pyra-mid network for stereo matching[C]//Proc of Asian Conference on Computer Vision.2018. [6]YI K,TRULLS E,LEPETIT V,et al.LIFT:Learned invariant feature transform[C]//Computer Vision(ECCV 2016).2016: 467-483. [7]MIHAI D,IGNACIO R,TOMAS P et al.D2-Net:A trainable CNN for joint detection and description of local features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019;8092-8101. [8]DANIEL D,TOMASZ M,A-NDREW R.Self-improvingvisualodometry[J].arXiv:1812.03245,2018. [9]DANIEL D,TOMASZ M,ANDREW R.SuperPoint:Self-supervised interest point detection and description[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.2018:224-236. [10]BALNTANS V,LENC K,VEDALDI A,et al.HPatches:Abenchmark and evaluation of handcrafted and learned local descriptors[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition (CVPR).2017:5173-5182. [11]PAULE S,DANIEL D,TOMASZ M,et al.SuperGlue:Learning Feature Matching With Graph Neural Networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2020:4938-4947. [12]DANIEL D,TOMASZ M,A-NDREW R.Deep image homography estimation[J].arXiv:1606.03798,2016.2. [13]JUHO L,YOONHO L,JUNGTAEK K,et al.Set Transformer:A framework for attention-based permutation-invariant neural networks[C]//Proceedings of the 36th International Conference on Machine Learning(PMLR 97).2019:3744-3753. [14]LUO Z X,SHEN T W,ZHOUL,et al.ContextDesc:Local descriptor augmentation with cross-modality context[C]//Proceedings of theIEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:2527-2536. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[4] | 胡安祥, 尹小康, 朱肖雅, 刘胜利. 基于数据流特征的比较类函数识别方法 Strcmp-like Function Identification Method Based on Data Flow Feature Matching 计算机科学, 2022, 49(9): 326-332. https://doi.org/10.11896/jsjkx.220200163 |
[5] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[6] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[7] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[8] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[9] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[10] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[11] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[12] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[13] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[14] | 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋. 改进Faster R-CNN的光学遥感飞机目标检测 Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN 计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121 |
[15] | 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤. 不同数据增强方法对模型识别精度的影响 Influence of Different Data Augmentation Methods on Model Recognition Accuracy 计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210 |
|