计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 89-95.doi: 10.11896/jsjkx.200800034
所属专题: 智能化边缘计算
单美静, 秦龙飞, 张会兵
SHAN Mei-jing, QIN Long-fei, ZHANG Hui-bing
摘要: 在车载边缘计算单元中,由于其硬件设备的资源受限,开发适用于车载边缘计算的轻量级、高效的交通标识检测模型变得越来越迫切。文中提出了一种基于Tiny YOLO改进的轻量级交通标识检测模型,称为L-YOLO。首先,L-YOLO使用部分残差连接来增强轻量级网络的学习能力;其次,为了降低交通标识的误检和漏检,L-YOLO使用高斯损失函数作为边界框的定位损失。在TAD16K交通标识检测数据集上,L-YOLO的参数量为18.8 M,计算量为8.211 BFlops,检测速度为83.3 FPS,同时mAP达到86%。实验结果显示,该算法在保证实时性的同时,还提高了检测精度。
中图分类号:
[1] ZHU Z,LIANG D,ZHANG S,et al.Traffic-sign detection and classification in the wild[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:2110-2118. [2] LI Y,WANG J,XING T,et al.TAD16K:An enhanced benchmark for autonomous driving[C]//IEEE International Confe-rence on Image Processing.IEEE Computer Society,2017:2344-2348. [3] YANG T,LONG X,SANGAIAH A K,et al.Deep detectionnetwork for real-life traffic sign in vehicular networks[J].Computer Networks,2018,136(8):95-104. [4] LU Y,JIA M,ZHANG S,et al.Traffic signal detection and classification in street views using an attention model[J].Computational Visual Media,2018,4(3):253-266. [5] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision And Pattern Recognition.IEEE Computer Society,2016:779-788. [6] REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:7263-7271. [7] REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv:1804.02767,2018. [8] WANG C Y,LIAO H Y M,CHEN P Y,et al.Enriching variety of layer-wise learning information by gradient combination[C]//IEEE/CVF International Conference on Computer Vision Workshop.IEEE Computer Society,2019:2477-2484. [9] CHOI J,CHUN D,KIM H,et al.Gaussian YOLOv3:An accurate and fast object detector using localization uncertainty for autonomous driving[J].arXiv:1904.04620v2,2019. [10] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2014:580-587. [11] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [12] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [13] GIRSHICK,ROSS.Fast R-CNN[C]//IEEE International Conference on Computer vision.IEEE Computer Society,2015:1440-1448. [14] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Trans.Pattern Anal.Mach.Intell.,2017,39:1137-1149. [15] LIU W,ANGUELOV D.SSD:Single Shot MultiBox Detector[C]//The 14th European Conference on Computer Vision.2016:21-37. [16] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations.2015:1556. [17] HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770-778. [18] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:2117-2125. [19] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE international conference on computer vision.IEEE Computer Society,2017:2961-2969. [20] NEUBECK A,GOOL,Van L J.Efficient Non-Maximum Suppression[C]//International Conference on Pattern Recognition.IEEE Computer Society,2006:850-855. [21] STALLKAMP J,SCHLIPSING M,SALMEN J,et al.The germantraffic sign recognition benchmark:a multi-class classificationcompetition[C]//The International Joint Conference on Neural Networks.IEEE Computer Society,2011:1453-1460. [22] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The kitti vision benchmark suite [C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2012:3354-3361. [23] REDMON J.Darknet:Open Source Neural Networks in C,2013-2016 [OL].http://pjreddie.com/darknet/. [24] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objectsin context[C]//The 12th European Conference on Computer Vision.2014:740-755. |
[1] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[2] | 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英. VEC中基于动态定价的车辆协同计算卸载方案 Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC 计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166 |
[3] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[4] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[5] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[6] | 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉. 基于边框距离度量的增量目标检测方法 Incremental Object Detection Method Based on Border Distance Measurement 计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132 |
[7] | 王灿, 刘永坚, 解庆, 马艳春. 基于软标签和样本权重优化的Anchor Free目标检测算法 Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization 计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240 |
[8] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[9] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[10] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[11] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[12] | 刘月红, 牛少华, 神显豪. 基于卷积神经网络的虚拟现实视频帧内预测编码 Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network 计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179 |
[13] | 徐鸣珂, 张帆. Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法 Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition 计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085 |
[14] | 杨玥, 冯涛, 梁虹, 杨扬. 融合交叉注意力机制的图像任意风格迁移 Image Arbitrary Style Transfer via Criss-cross Attention 计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236 |
[15] | 杨健楠, 张帆. 一种结合双注意力机制和层次网络结构的细碎农作物分类方法 Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure 计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169 |
|