计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 89-95.doi: 10.11896/jsjkx.200800034

所属专题: 智能化边缘计算

• 智能化边缘计算* 上一篇    下一篇

L-YOLO:适用于车载边缘计算的实时交通标识检测模型

单美静, 秦龙飞, 张会兵   

  1. 华东政法大学信息科学与技术系 上海 201620
    广西可信软件重点实验室(桂林电子科技大学) 广西 桂林 541004
  • 收稿日期:2020-08-05 修回日期:2020-12-12 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 张会兵(zhanghuibing@guet.edu.cn)
  • 作者简介:shanmeijing@ecupl.edu.cn
  • 基金资助:
    国家社科基金一般项目(16BFX085)

L-YOLO:Real Time Traffic Sign Detection Model for Vehicle Edge Computing

SHAN Mei-jing, QIN Long-fei, ZHANG Hui-bing   

  1. Department of Information Science and Technology,East China University of Political Science and Law,Shanghai 201620,China
    Guangxi Key Lab of Trusted Software,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China
  • Received:2020-08-05 Revised:2020-12-12 Online:2021-01-15 Published:2021-01-15
  • About author:SHAN Mei-jing,born in 1979,Ph.D,associate professor.Her main research interests include cybercrime and compu-ter forensics and machine learning.
    ZHANG Hui-bing,born in 1976,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include Internet of Things,edge computing and social computing.
  • Supported by:
    National Social Science Fund of China(16BFX085).

摘要: 在车载边缘计算单元中,由于其硬件设备的资源受限,开发适用于车载边缘计算的轻量级、高效的交通标识检测模型变得越来越迫切。文中提出了一种基于Tiny YOLO改进的轻量级交通标识检测模型,称为L-YOLO。首先,L-YOLO使用部分残差连接来增强轻量级网络的学习能力;其次,为了降低交通标识的误检和漏检,L-YOLO使用高斯损失函数作为边界框的定位损失。在TAD16K交通标识检测数据集上,L-YOLO的参数量为18.8 M,计算量为8.211 BFlops,检测速度为83.3 FPS,同时mAP达到86%。实验结果显示,该算法在保证实时性的同时,还提高了检测精度。

关键词: Tiny YOLO, 残差连接, 车载边缘计算, 交通标识检测, 卷积神经网络, 目标检测

Abstract: In the vehicle edge computing unit,due to the limited resources of its hardware equipment,it becomes more and more urgent to develop a lightweight and efficient traffic sign detection model for vehicle edge computing.This paper proposes a lightweight traffic sign detection model based on Tiny YOLO,which is called L-YOLO.Firstly,L-YOLO uses partial residual connection to enhance the learning ability of lightweight network.Secondly,in order to reduce the false detection and missed detection of traffic signs,L-YOLO uses Gauss loss function as the location loss of boundary box.In the traffic sign detection dataset named TAD16K,the parameter amount of L-YOLO is 18.8M,the calculation amount is 8.211BFlops,the detection speed is 83.3FPS,and the mAP reaches 86%.Experimental results show that the algorithm not only guarantees the real-time performance,but also improves the detection accuracy.

Key words: Convolutional neural network, Object detection, Residual connection, Tiny YOLO, Traffic sign detection, Vehicle edge computing

中图分类号: 

  • TP391
[1] ZHU Z,LIANG D,ZHANG S,et al.Traffic-sign detection and classification in the wild[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:2110-2118.
[2] LI Y,WANG J,XING T,et al.TAD16K:An enhanced benchmark for autonomous driving[C]//IEEE International Confe-rence on Image Processing.IEEE Computer Society,2017:2344-2348.
[3] YANG T,LONG X,SANGAIAH A K,et al.Deep detectionnetwork for real-life traffic sign in vehicular networks[J].Computer Networks,2018,136(8):95-104.
[4] LU Y,JIA M,ZHANG S,et al.Traffic signal detection and classification in street views using an attention model[J].Computational Visual Media,2018,4(3):253-266.
[5] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//IEEE Conference on Computer Vision And Pattern Recognition.IEEE Computer Society,2016:779-788.
[6] REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:7263-7271.
[7] REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv:1804.02767,2018.
[8] WANG C Y,LIAO H Y M,CHEN P Y,et al.Enriching variety of layer-wise learning information by gradient combination[C]//IEEE/CVF International Conference on Computer Vision Workshop.IEEE Computer Society,2019:2477-2484.
[9] CHOI J,CHUN D,KIM H,et al.Gaussian YOLOv3:An accurate and fast object detector using localization uncertainty for autonomous driving[J].arXiv:1904.04620v2,2019.
[10] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2014:580-587.
[11] UIJLINGS J R R,VAN DE SANDE K E A,GEVERS T,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171.
[12] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[13] GIRSHICK,ROSS.Fast R-CNN[C]//IEEE International Conference on Computer vision.IEEE Computer Society,2015:1440-1448.
[14] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Trans.Pattern Anal.Mach.Intell.,2017,39:1137-1149.
[15] LIU W,ANGUELOV D.SSD:Single Shot MultiBox Detector[C]//The 14th European Conference on Computer Vision.2016:21-37.
[16] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations.2015:1556.
[17] HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770-778.
[18] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2017:2117-2125.
[19] HE K,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[C]//IEEE international conference on computer vision.IEEE Computer Society,2017:2961-2969.
[20] NEUBECK A,GOOL,Van L J.Efficient Non-Maximum Suppression[C]//International Conference on Pattern Recognition.IEEE Computer Society,2006:850-855.
[21] STALLKAMP J,SCHLIPSING M,SALMEN J,et al.The germantraffic sign recognition benchmark:a multi-class classificationcompetition[C]//The International Joint Conference on Neural Networks.IEEE Computer Society,2011:1453-1460.
[22] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The kitti vision benchmark suite [C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2012:3354-3361.
[23] REDMON J.Darknet:Open Source Neural Networks in C,2013-2016 [OL].http://pjreddie.com/darknet/.
[24] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objectsin context[C]//The 12th European Conference on Computer Vision.2014:740-755.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[3] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[4] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[5] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[6] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[7] 王灿, 刘永坚, 解庆, 马艳春.
基于软标签和样本权重优化的Anchor Free目标检测算法
Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization
计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240
[8] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[9] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[10] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[11] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[12] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[13] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[14] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
[15] 杨健楠, 张帆.
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure
计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!