计算机科学 ›› 2021, Vol. 48 ›› Issue (1): 96-102.doi: 10.11896/jsjkx.200800215

所属专题: 智能化边缘计算

• 智能化边缘计算* 上一篇    下一篇

基于近似匹配的移动边缘计算缓存管理方法

郦睿翔, 毛莺池, 郝帅   

  1. 河海大学计算机与信息学院 南京 211100
  • 收稿日期:2020-08-30 修回日期:2020-11-07 出版日期:2021-01-15 发布日期:2021-01-15
  • 通讯作者: 毛莺池(yingchimao@hhu.edu.com)
  • 作者简介:loye317@sina.com
  • 基金资助:
    国家重点研发计划(2018YFC0407105);国家自然科学基金重点项目(61832005);华能集团重点研发课题(HNKJ17-21)

Cache Management Method in Mobile Edge Computing Based on Approximate Matching

LI Rui-xiang, MAO Ying-chi, HAO Shuai   

  1. School of Computer and Information,Hohai University,Nanjing 211100,China
  • Received:2020-08-30 Revised:2020-11-07 Online:2021-01-15 Published:2021-01-15
  • About author:LI Rui-xiang,born in 1996,master candidate,is a student member of China Computer Federation.His main research interests include edge computing,and federated learning.
    MAO Ying-chi,born in 1976,Ph.D,professor,is a senior member of China Computer Federation.Her main research interests include cloud computing and edge computing,mobile sen-sing systems and internet of things.
  • Supported by:
    National Key R&D Program of China(2018YFC0407105),Key Project of National Nature Science Foundation of China(61832005) and Key Technology Project of China Huaneng Group (HNKJ17-21).

摘要: 针对终端用户产生大量相同或相似计算请求的情况,可以通过近似匹配在边缘服务器缓存空间中查找相似数据,选取可复用的计算结果。现有算法大多未考虑数据分布不均的问题,导致计算量和时间开销较大,对此文中提出基于动态局部敏感哈希算法与加权k近邻算法的缓存数据选择策略(Cache Selection Strategy based on Dynamic-LSH algorithm and Weighted-KNN algorithm,CSS-DLWK)。其中,Dynamic-LSH算法能够针对数据分布不均的问题,根据数据分布的变化动态调整哈希桶粒度,从缓存空间中选出与输入数据相似的数据集合;Weighted-KNN算法以距离和样本数为权重,对由Dynamic-LSH算法获取的相似数据集合进行数据再选取,得到与输入数据最相似的数据,获取相应的计算结果以供复用。仿真实验结果表明,在CIFAR-10数据集中,与基于A-LSH算法与H-KNN算法的缓存选取策略相比,CSS-DLWK策略的平均选取准确率提高了4.1%;与传统的LSH算法相比,其平均选取准确率提高了16.8%。CSS-DLWK策略能够在可接受的数据选取时间开销内,有效地提高可复用数据选取的准确率,从而减少边缘服务器的重复计算。

关键词: 缓存替换, 近似匹配, 局部敏感哈希算法, 数据复用, 移动边缘计算

Abstract: For the case of massive identical or similar computing requests from end users,a search of similar data in the cache space of the edge server by approximate match can be applied to select computing results that can be reused.Most of the existing algorithms do not consider the uneven distribution of data,resulting in a large amount of calculation and time overhead.In this paper,a cache selection strategy based on dynamic-locality sensitive hashing (LSH) algorithm and Weighted-k nearest neighbor (KNN) algorithm(CSS-DLWK) is proposed.The Dynamic-LSH algorithm can deal with uneven data distribution by dynamically adjusting the hash bucket size accordingly,thereby selecting data sets that are similar to the input data from the cache space.Then,regarding distance and sample size as weights,the weighted-KNN algorithm re-selects the data in the similar data sets acquired by the dynamic-LSH algorithm.From this approach,the data most similar to the input data are obtained,and the corresponding computing result is acquired for reuse.As demonstrated by simulation experiments,in the CIFAR-10 dataset,CSS-DLWK increases the ave-rage selection accuracy by 4.1% compared to the cache selection strategy based on A-LSH and H-KNN algorithms.The improvement is 16.8% compared to traditional LSH algorithms.Overall,with acceptable time costs in data selection,the proposed strategy can effectively improve the selection accuracy of reusable data,thereby reducing repetitive computation in the edge server.

Key words: Approximate matching, Cache replacement, Data reuse, Locality sensitive hashing algorithm, Mobile edge computing

中图分类号: 

  • TP399
[1] SHI W,CAO J,ZHANG Q,et al.Edge computing:Vision and challenges[J].IEEE Internet of Things Journal,2016,3(5):637-646.
[2] GUO Y,LIU F,CAI Z,et al.Edge-based efficient search over encrypted data mobile cloud storage[J].Sensors,2018,18(4):1189.
[3] MASTORAKIS S,MTIBAA A,LEE J,et al.ICedge:WhenEdge Computing Meets Information-Centric Networking[J].IEEE Internet of Things Journal,2020,7(5):4203-4217.
[4] SANADHYA S,SIVAKUMAR R,KIM K H,et al.Asymmetric caching:improved network deduplication for mobile devices[C]//Proceedings of the 18th Annual International Conference on Mobile Computing and Networking.ACM,2012:161-172.
[5] GUO Y,LIU F,CAI Z,et al.Edge-based efficient search over encrypted data mobile cloud storage[J].Sensors,2018,18(4):1189.
[6] SUN S Y,YAO W B,LI X Y.DARS:A dynamic adaptive replica strategy under high load Cloud-P2P[J].Future Generation Computer Systems,2018,78:31-40.
[7] ANDONI A,INDYK P.Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions[C]//2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).IEEE,2006:459-468.
[8] BECKMANN N,KRIEGEL H P,SCHNEIDER R,et al.The R*-tree:An Efficient and Robust Access Method for Points and Rectangles[C]//Proceedings of the ACM SIGMOD Confe-rence on Management of Data.1990:322-331.
[9] SAMET H.The design and analysis of spatial data structures[M].Reading,MA:Addison-Wesley,1990.
[10] YIANILOS P N.Data structures and algorithms for nearestneighbor search in general metric spaces[C]//Soda.1993:311-321.
[11] SANADHYA S,SIVAKUMAR R,KIM K H,et al.Asymmetric caching:improved network deduplication for mobile devices[C]//Proceedings of the 18th Annual International Conference on Mobile Computing and Networking.ACM,2012:161-172.
[12] DUBOIS L,AMALDAS M,SHEPPARD E.Key considerations as deduplication evolves into primary storage[J].White Paper,2011,223310.
[13] KANNAN K,BHATTACHARYA S,RAJ K,et al.Seesaw-similarity exploiting storage for accelerating analytics workflows[C]//8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage'16).2016.
[14] TANG Y,YANG J.Secure deduplication of general computa-tions[C]//2015 USENIX Conference on Annual Technical Conference.2015:319-331.
[15] ZHANG Z,TAO M.Accelerated Deep Reinforcement Learning for Wireless Coded Caching[C]//2019 IEEE/CIC International Conference on Communications in China (ICCC).IEEE,2019:249-254.
[16] ZHU H,CAO Y,WANG W,et al.Deep reinforcement learning for mobile edge caching:Review,new features,and open issues[J].IEEE Network,2018,32(6):50-57.
[17] ZHONG C,GURSOY M C,VELIPASALAR S.A deep reinforcement learning-based framework for content caching[C]//2018 52nd Annual Conference on Information Sciences and Systems (CISS).IEEE,2018:1-6.
[18] GUO P,HU B,LI R,et al.Foggycache:Cross-device approximate computation reuse[C]//Proceedings of the 24th Annual International Conference on Mobile Computing and Networking.ACM,2018:19-34.
[19] GUO P,HU W.Potluck:Cross-application approximate deduplication for computation-intensive mobile applications[C]//Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems.2018:271-284.
[20] LI Y,CHENG B.An improved k-nearest neighbor algorithm and its application to high resolution remote sensing image classification.[C]//2009 17th International Conference on Geoinforma-tics.IEEE,2009:1-4.
[21] PEREZ S.Lets smartphone cameras understand what they see[EB/OL].https://techcrunch.com/2017/05/17/google-lens/.
[22] LOWE D G.Distinctive Image Features from Scale-InvariantKeypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[23] ANDONI A,INDYK P.E2LSH:Exact euclidean locality-sensitive hashing[EB/OL].http://web.mit.edu/andoni/www/LSH/.
[24] COVER T,HART P.Nearest Neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.
[25] SHAH J,SMOLENSKI B,YANTORNO R,et al.Sequentialknearest neighbor pattern recognition for usable speech classification[C]//2004 12th European Signal Processing Conference.Vienna,2004:741-744.
[26] RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet Large Scale Visual Recognition Challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[27] KRIZHEVSKY A,HINTON G.Learning Multiple Layers of Features from Tiny Images[R].University of Toronto,2009.
[1] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[2] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[3] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[4] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[5] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[6] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[7] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[8] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[9] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[10] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[11] 范艳芳, 袁爽, 蔡英, 陈若愚.
车载边缘计算中基于深度强化学习的协同计算卸载方案
Deep Reinforcement Learning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing
计算机科学, 2021, 48(5): 270-276. https://doi.org/10.11896/jsjkx.201000005
[12] 李振江, 张幸林.
减少核心网拥塞的边缘计算资源分配和卸载决策
Resource Allocation and Offloading Decision of Edge Computing for Reducing Core Network Congestion
计算机科学, 2021, 48(3): 281-288. https://doi.org/10.11896/jsjkx.200700025
[13] 姚泽玮, 林嘉雯, 胡俊钦, 陈星.
基于PSO-GA的多边缘负载均衡方法
PSO-GA Based Approach to Multi-edge Load Balancing
计算机科学, 2021, 48(11A): 456-463. https://doi.org/10.11896/jsjkx.210100191
[14] 徐旭, 钱丽萍, 吴远.
基于移动边缘计算的区块链计算资源分配和收益分享研究
Computation Resource Allocation and Revenue Sharing Based on Mobile Edge Computing for Blockchain
计算机科学, 2021, 48(11): 124-132. https://doi.org/10.11896/jsjkx.201100205
[15] 梁俊斌, 田凤森, 蒋婵, 王天舒.
物联网中多设备多服务器的移动边缘计算任务卸载技术综述
Survey on Task Offloading Techniques for Mobile Edge Computing with Multi-devices and Multi-servers in Internet of Things
计算机科学, 2021, 48(1): 16-25. https://doi.org/10.11896/jsjkx.200500095
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!