计算机科学 ›› 2021, Vol. 48 ›› Issue (11): 250-257.doi: 10.11896/jsjkx.200900058

• 计算机图形学&多媒体 • 上一篇    下一篇

基于多补丁和多尺度层级聚合网络的快速非均匀图像去雾

杨坤, 张娟, 方志军   

  1. 上海工程技术大学电子电气工程学院 上海201620
  • 收稿日期:2020-09-07 修回日期:2021-05-26 出版日期:2021-11-15 发布日期:2021-11-10
  • 通讯作者: 张娟(zhang-j@foxmail.com)
  • 作者简介:1249959224@qq.com
  • 基金资助:
    国家自然科学基金(61772328)

Multi-patch and Multi-scale Hierarchical Aggregation Network for Fast Nonhomogeneous ImageDehazing

YANG Kun, ZHANG Juan, FANG Zhi-jun   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2020-09-07 Revised:2021-05-26 Online:2021-11-15 Published:2021-11-10
  • About author:YANG Kun,born in 1996,postgra-duate.His main research interests include computer vision and deep lear-ning.
    ZHANG Juan,born in 1975,Ph.D,associate professor,is a member of China Computer Federation.Her main research interests include computer vision and so on.
  • Supported by:
    National Natural Science Foundation of China(61772328).

摘要: 尽管基于卷积神经网络的去雾算法在合成的均匀雾气数据集上已经取得了巨大进展,但在真实的非均匀有雾图像上仍然表现不佳。为了快速有效地去除图像中的非均匀雾气,文中首先提出了一种多补丁和多尺度层级聚合网络结构(Multi-patch and Multi-scale Hierarchical Aggregation Network,MPSHAN),融合了多补丁局部化信息和多尺度全局化信息。其次,提出了层级融合模块(Hierarchical Fusion Module,HFM),既解耦了残差融合以实现更丰富的非线性特征表达,又通过通道注意力机制提升了关键位置的特征融合质量。同时,对层级结构使用扩张卷积获得多尺度信息,增强特征图以优化融合效果。此外,在损失函数中加入频域损失以恢复更好的边缘质量。实验结果表明,所提算法在非均匀雾气图像上具有很好的鲁棒性,1 200×1 600高分辨率图像的平均处理时间仅有0.044 s,相比其他去雾算法,其在图像去雾效果和运行时间之间实现了更好的平衡。

关键词: 层级融合模块, 多补丁, 多尺度, 扩张卷积, 图像去雾, 注意力机制

Abstract: Despite dehazing algorithms based on convolutional neural networks have made tremendous progress in synthetic uniform hazy datasets,they still perform poorly on real nonhomogeneous hazy images.In order to achieve fast and effective nonhomogeneous image dehazing,we propose a multi-patch and multi-scale hierarchical aggregation network (MPSHAN),which fuses multi-patch local information and multi-scale global information.Secondly,we propose a hierarchical fusion module (HFM),which not only decouples residual fusion to achieve richer non-linear feature expression,but also improves the feature fusion qua-lity at key locations through the channel attention mechanism.At the same time,dilated convolution is used on hierarchies to obtain multi-scale information,which enhances feature maps to optimize the fusion effect.In addition,in the loss function,we add frequency domain loss to restore better edge quality.The experimental results show that the proposed algorithm has good robustness on nonhomogeneous hazy images,and the average processing time of 1 200×1 600 high-resolution images is only 0.044 s.Compared with other dehazing algorithms,it achieves a better balance between image dehazing effect and running time.

Key words: Attention mechanism, Dilated convolution, Hierarchical fusion module, Image dehazing, Multi-patch, Multi-scale

中图分类号: 

  • TP391
[1]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions Pattern Analysis Machine Intelligence,2017,39(6):1137-1149.
[2]SHELHAMER E,LONG J,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(4):640-651.
[3]RANJAN R,PATEL V M,CHELLAPPA R.HyperFace:ADeep Multi-Task Learning Framework for Face Detection,Landmark Localization,Pose Estimation,and Gender Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(1):121-135.
[4]CAI B,XU X,JIA K,et al.DehazeNet:An End-to-End System for Single Image Haze Removal[J].IEEE Transactions on Image Processing,2016,25(11):5187-5198.
[5]REN W,LIU S,ZHANG H,et al.Single Image Dehazing via Multi-scale Convolutional Neural Networks[C]//Proceedings of the European Conference on Computer Vision(ECCV).Sprin-ger,2016:154-169.
[6]LI B,PENG X,WANG Z,et al.AOD-Net:All-in-One Dehazing Network[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV).IEEE,2017:4780-4788.
[7]ZHAO J,ZHANG J,LI Z,et al.DD-CycleGAN:Unpaired image dehazing via Double-Discriminator Cycle-Consistent Generative Adversarial Network[J].Engineering Applications of Artificial Intelligence,2019,82:263-271.
[8]CHEN D,HE M,FAN Q,et al.Gated Context AggregationNetwork for Image Dehazing and Deraining[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).IEEE,2019:1375-1383.
[9]LIU X,MA Y,SHI Z,et al.GridDehazeNet:Attention-BasedMulti-Scale Network for Image Dehazing[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision (ICCV).IEEE,2019:7313-7322.
[10]QIN X,WANG Z,BAI Y,et al.FFA-Net:Feature Fusion Attention Network for Single Image Dehazing[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2020:11908-11915.
[11]ANCUTI C O,ANCUTI C,TIMOFTE R.NH-HAZE:AnImage Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free Images[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE,2020:1798-1805.
[12]DAS S D,DUTTA S.Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous Image Dehazing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE,2020:1994-2001.
[13]HIDE R.Optics of the Atmosphere:Scattering by Molecules andParticles[J].Physics Bulletin,1977,28(11):521.
[14]HE K M,SUN J,TANG X O.Single image haze removal using dark channel prior[C]//Proceedings of the 2009 IEEEConfe-rence on Computer Vision and Pattern Recognition.IEEE,2009:1956-1963.
[15]ZHU Z,HUANG R,ZANG T G,et al.Single Image Defogging Method Based on Weighted Near-InFrared Image Fusion[J].Computer Science,2020,47(8):241-244.
[16]CHEN Z Y,LONG D Y,WANG X,et al.Dark Channel Defogging Algorithm Based on Inverse Channel and Improved Guided Filtering[J].Computer Engineering,2021,47(6):245-252.
[17]LIU J,WU H,XIE Y,et al.Trident Dehazing Network[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE,2020:1732-1741.
[18]ZHANG H,DAI Y,LI H,et al.Deep Stacked HierarchicalMulti-Patch Network for Image Deblurring[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2019:5971-5979.
[19]CHEN L,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic Image Segmentation with Deep Convolutional Nets,Atrous Convolution,and Fully Connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848.
[20]HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2018:7132-7141.
[21]WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision(ECCV).Springer,2018:3-19.
[22]ZHONG Z,LIN Z Q,BIDART R,et al.Squeeze-and-Attention Networks for Semantic Segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:13062-13071.
[23]HOU Q,ZHANG L,CHENG M M,et al.Strip Pooling:Rethinking Spatial Pooling for Scene Parsing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:4002-4011.
[24]ANCUTI C O,ANCUTI C,SBERT M,et al.Dense-Haze:ABenchmark for Image Dehazing with Dense-Haze and Haze-Free Images[C]//Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP).IEEE,2019:1014-1018.
[25]KINGMA D ,BA J.Adam:A Method for Stochastic Optimization[C]//Proceedings of the International Conference for Learning Representations (ICLR).2015:1-15.
[26]JOHNSON J,ALAHI A,LI F F.Perceptual Losses for Real-Time Style Transfer and Super-Resolution[C]//Proceedings of the European Conference on Computer Vision(ECCV).Sprin-ger,2016:694-711.
[27]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556,2014.
[28]ZHOU W,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[1] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[2] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[5] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[6] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[7] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[8] 魏恺轩, 付莹.
基于重参数化多尺度融合网络的高效极暗光原始图像降噪
Re-parameterized Multi-scale Fusion Network for Efficient Extreme Low-light Raw Denoising
计算机科学, 2022, 49(8): 120-126. https://doi.org/10.11896/jsjkx.220200179
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[12] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[13] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!