计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 219-224.doi: 10.11896/jsjkx.201000074
袁景凌, 丁远远, 盛德明, 李琳
YUAN Jing-ling, DING Yuan-yuan, SHENG De-ming, LI Lin
摘要: 社交网络已经成为人们日常生活中不可分割的一部分,对社交媒体信息进行情感分析有助于了解人们在社交网站上的观点、态度和情绪。传统情感分析主要依赖文本内容,随着智能手机的兴起,网络上的信息逐渐多样化,除了文本内容,还包括图像。通过研究发现,在多数情况下,图像对文本有着支持增强作用,而不独立于文本来表达情感。文中提出了一种新颖的图像文本情感分析模型(LSTM-VistaNet),具体来说,LSTM-VistaNet模型未将图像信息作为直接输入,而是利用VGG16网络提取图像特征,进一步生成视觉方面注意力,赋予文档中核心句子更高的权重,得到基于视觉方面注意力的文档表示;此外,还使用LSTM模型对文本情感进行提取,得到基于文本的文档表示。最后,将两组分类结果进行融合,以获得最终的分类标签。在Yelp餐馆评论的数据集上,所提模型在精确度上达到了62.08%,比精度较高的模型BiGRU-mVGG提高了18.92%,验证了将视觉信息作为方面注意力辅助文本进行情感分类的有效性;比VistaNet模型提高了0.32%,验证了使用LSTM模型可以有效弥补VistaNet模型中图像无法完全覆盖文本的缺陷。
中图分类号:
[1]LI X,XIE H,CHEN L,et al.News impact on stock price return via sentiment analysis[J].Proceedings of the Knowledeg Based System,2014,69:14-23. [2]KAGAN V,STEVENS A,SUBRAHMANIAN V S.Usingtwitter sentiment to forecast the 2013 Pakistani election and the 2014 Indian election[J].Proceedings of the IEEE Intelligent Systems,2015,30(1):2-5. [3]YADAV S,EKBAL A,SAHA S,et al.Medical sentiment analysis using social media:towards building a patient assisted system[C]//Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018).2018:2790-2797. [4]TRUONG T Q,LAUW H W.VistaNet:Visual Aspect Atten-tion Network for Multimodal Sentiment Analysis[C]//Procee-dings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-2019).2019:305-312. [5]YU D,FU J,MEI T,et al.Multi-level attention networks for visual question answering[C]//Proceedings of the Computer Vision and Pattern Recognition (CVPR).2017:4187-4195. [6]PORIA S,CHATURVEDI I,CAMBRIA E,et al.Convolutional MKL Based Multimodal Emotion Recognition and Sentiment Analysis[C]//Proceedings of 2016 IEEE 16th International Conference on Data Mining (ICDM).2017:439-448. [7]XU N,MAO W,CHEN G.Multi-Interactive Memory Network for Aspect Based Multimodal Sentiment Analysis[C]//Procee-dings of the AAAI Conference on Artificial Intelligence,2019,33(1),371-378. [8]CHANSW K,CHONGMW C.Sentiment analysis in financial texts[J].Proceedings of the Decision Support Systems,2017,94(2017):53-64. [9]SEVERYN A,MOSCHITTI A.Twitter sentiment analysis with deep convolutional neural networks[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval.2015:959-962. [10]LAI S,XU L,LIU K,et al.Recurrent convolutional neural networks for text classification[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.2015:2267-2273. [11]NGUYEN T,KAVURI S,LEE M.A multimodal convolutional neuro-fuzzy network for emotion understanding of movie clips[J].Proceedings of the Neural Networks.2019,118:208-219. [12]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [13]YANG Z,YANG D,DYER C,et al.Hierarchical attention networks for document classification[C]//Proceedings of North American Chapter of the Association for Computational Linguistics (HLT-NAACL).2016:1480-1489. [14]TANG D,QIN B,LIU T.Aspect level sentiment classification with deep memory network[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).2016:214-224. [15]TRUONG Q,LAUW H W.Visual sentiment analysis for review images with item-oriented and user-oriented CNN[C]//Proceedings of the 25th ACM International Conference on Multimedia.2017:1274-1282. [16]LI M,GAN T,LIU M,et al.Long-tail Hashtag Recommendation for Micro-videos with Graph Convolutional Network[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:509-518. [17]SIERSDORFER S,MINACK E,DENG F,et al.Analyzing and predicting sentiment of images on the social web[C]//Procee-dings of the 18th ACM International Conference on Multimedia.2010:715-718. [18]YOU Q,LUO J,JIN H,et al.Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings In AAAI.2015:381-388. [19]BORTH D,JI R,CHEN T,et al.Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//Procee-dings of the 21st ACM International Conference on Multimedia.2013:223-232. [20]YOU Q,JIN H,LUO J.Visual sentiment analysis by attending on local image regions[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence.2017:231-237. [21]XU N,MAO W.MultiSentiNet:A Deep Semantic Network for Multimodal Sentiment Analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.2017:2399-2402. [22]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of theConfe-rence on Empirical Methods in Natural Language Processing.2014:1532-1543. [23]CHO K,VAN M,GULCEHRE C,et al.Learning phrase representations using rnn encoder-decoder for statistical machine translation[C]//Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014).2014:1724-1734. [24]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the International Conference on Learning Representations.2015. [25]YUE W,WAEL A,PREMKUMAR N.Multi-Modality ImageManipu-lation Detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).2019:9543-9552. [26]TANG D,QIN B,LIU T.Document modeling with gated recurrent neural network for sentiment classification[C]//Procee-dings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).2015:1422-1432. |
[1] | 刘创, 熊德意. 多语言问答研究综述[J]. 计算机科学, 2022, 49(1): 65-72. |
[2] | 陈志毅, 隋杰. 基于DeepFM和卷积神经网络的集成式多模态谣言检测方法[J]. 计算机科学, 2022, 49(1): 101-107. |
[3] | 胡艳丽, 童谭骞, 张啸宇, 彭娟. 融入自注意力机制的深度学习情感分析方法[J]. 计算机科学, 2022, 49(1): 252-258. |
[4] | 周新民, 胡宜桂, 刘文洁, 孙荣俊. 基于多模态多层级数据融合方法的城市功能识别研究[J]. 计算机科学, 2021, 48(9): 50-58. |
[5] | 戴宏亮, 钟国金, 游志铭, 戴宏明. 基于Spark的舆情情感大数据分析集成方法[J]. 计算机科学, 2021, 48(9): 118-124. |
[6] | 张晓宇, 王彬, 安卫超, 阎婷, 相洁. 基于融合损失函数的3D U-Net++脑胶质瘤分割网络[J]. 计算机科学, 2021, 48(9): 187-193. |
[7] | 张瑾, 段利国, 李爱萍, 郝晓燕. 基于注意力与门控机制相结合的细粒度情感分析[J]. 计算机科学, 2021, 48(8): 226-233. |
[8] | 孙圣姿, 郭炳晖, 杨小博. 用于多模态语义分析的嵌入共识自动编码器[J]. 计算机科学, 2021, 48(7): 93-98. |
[9] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测[J]. 计算机科学, 2021, 48(7): 292-298. |
[10] | 胡聿文. 基于优化LSTM模型的股票预测[J]. 计算机科学, 2021, 48(6A): 151-157. |
[11] | 史伟, 付月. 考虑语境的微博短文本挖掘:情感分析的方法[J]. 计算机科学, 2021, 48(6A): 158-164. |
[12] | 陈慧琴, 郭贯成, 秦朝轩, 李兆碧. 基于GM-LSTM模型的南京市老年人口预测研究[J]. 计算机科学, 2021, 48(6A): 231-234. |
[13] | 潘芳, 张会兵, 董俊超, 首照宇. 基于高效Transformer的中文在线课程评论方面情感分析[J]. 计算机科学, 2021, 48(6A): 264-269. |
[14] | 俞建业, 戚湧, 王宝茁. 基于Spark的车联网分布式组合深度学习入侵检测方法[J]. 计算机科学, 2021, 48(6A): 518-523. |
[15] | 张明阳, 王刚, 彭起, 张岩峰. 学术论文公开评审平台数据分析[J]. 计算机科学, 2021, 48(6): 63-70. |
|