计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 225-232.doi: 10.11896/jsjkx.201100185
刘昕1, 袁家斌1,2, 王天星1
LIU Xin1, YUAN Jia-bin1,2, WANG Tian-xing1
摘要: 目前,室内人体行为识别技术被广泛应用于视频内容理解、居家养老、医疗护理等领域,现有研究方法更多的是对人体行为进行建模,忽略了视频中场景与人体行为间的联系。为了充分利用场景信息与室内人体运动的关联性,文中对基于场景先验知识的室内人体行为识别方法进行了研究,提出了一种基于场景先验知识的双流膨胀3D行为识别网络(Scene-Prior Know-ledge Inflated 3D ConvNet,SPI3D)。首先使用ResNet152网络提取场景特征进行场景分类,再基于场景分类的结果,引入量化后的场景先验知识,通过对权值进行约束来优化总体目标函数。另外,针对现有数据集多聚焦于人体行为特征、场景复杂且场景特征不明显的问题,自建了室内场景-行为识别数据集(Scene-Action DataBase,SADB)。实验结果表明,在SADB数据集上,SPI3D网络的识别准确率为87.9%,比直接利用I3D网络的识别准确率高6%。由此可见,引入场景先验知识后的室内人体行为识别模型具有更好的表现。
中图分类号:
[1]KAY W,CARREIRA J,SIMONYAN K,et al.The kinetics human action video dataset[J].arXiv:1705.06950,2017. [2]KUEHNE H,JHUANG H,GARROTE E,et al.HMDB:ALarge Video Database for Human Motion Recognition[C]//2011 International Conference on Computer Vision.Barcelona:IEEE,2011:2556-2563. [3]SOOMRO K,ZAMIR A R,SHAH M.UCF101:A Dataset of 101 Human Actions Classes From Videos in The Wild[J].ar-Xiv:1212.0402,2012. [4]SIMONYAN K,ZISSERMAN A.Two-Stream ConvolutionalNetworks for Action Recognition in Videos[M].Advances in Neural Information Processing Systems.Berlin:Springer,2014:568-576. [5]WANG L,XIONG Y,WANG Z,et al.Temporal Segment Networks:Towards Good Practices for Deep Action Recognition[C]//European Conference on Computer Vision.Cham:Sprin-ger,2016:20-36. [6]JI S,XU W,YANG M,et al.3D Convolutional Neural Networks for Human Action Recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2013,35(1):221-231. [7]TRAN D,BOURDEV L,FERGUS R,et al.Learning Spatiotemporal Features with 3D Convolutional Networks[C]//2015 IEEE International Conference on Computer Vision(ICCV).Santiago:IEEE,2015:4489-4497. [8]QIU Z,YAO T,MEI T.Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks[C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:5534-5542. [9]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas:IEEE,2016:770-778. [10]CARREIRA J,ZISSERMAN A.Quo vadis,action recognition? a new model and the kinetics dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE,2017:6299-6308. [11]KIM J H,WON C S.Action Recognition in Videos Using Pre-trained 2D Convolutional Neural Networks[J].IEEE Access,2020,8:60179-60188. [12]YANG W B,YANG H C,LU C,et al.Gesture RecognitionBased on Skin Color Features and Convolutional Neural Network[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2018,35(4):75-81. [13]YAN H,LUO C,LI H,et al.Gait Recognition Method Based on Gait Energy Map Combined with VGG[J].Journal of Chongqing University of Technology(Natural Science),2020,34(5):166-172. [14]MARSZALEK M,LAPTEV I,SCHMID C.Actions in context[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Miami:IEEE,2009:2929-2936. [15]ZHANG H B,LEI Q,CHEN D S,et al.Probability-based me-thod for boosting human action recognition using scene context[J].IET Computer Vision,2016,10(6):528-536. [16]DONG X,TAN L,ZHOU L N,et al.Short Video Behavior Re-cognition Combining Scene and Behavior Features[J].Journal of Frontiers of Computer Science and Technology,2020,14(10):1754-1761. [17]MONTEIRO J,GRANADA R,MENEGUZZI F,et al.UsingScene Context to Improve Action Recognition[C]//23rd Iberoamerican Congress(CIARP 2018).Madrid,2018:954-961. [18]VU T H,OLSSON C,LAPTEV I,et al.Predicting actions from static scenes[C]//European Conference on Computer Vision.Cham:Springer,2014:421-436. [19]PENG B,LEI J,FU H,et al.Unsupervised Video Action Clustering via Motion-Scene Interaction Constraint[J].IEEE Transactions on Circuits and Systems for Video Technology,2018,30(1):131-144. [20]PARK J,LEE J,JEON S,et al.Video Summarization by Lear-ning Relationships between Action and Scene[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop(ICCVW).Seoul:IEEE,2019:1545-1552. [21]DING X,LUO Y,LI Q,et al.Prior knowledge-based deep lear-ning method for indoor object recognition and application[J].Systems Science & Control Engineering,2018,6(1):249-257. [22]ZHOU B,GARCIA A L,XIAO J,et al.Learning Deep Features for Scene Recognition using Places Database[J].Advances in Neural Information Processing Systems,2015,1:487-495. [23]ZHOU B,LAPEDRIZA A,KHOSLA A,et al.Places:A 10 Million Image Database for Scene Recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2018,40(6):1452-1464. [24]DILIGENTI M,ROYCHOWDHURY S,GORI M.IntegratingPrior Knowledge into Deep Learning[C]//IEEE International Conference on Machine Learning & Applications.IEEE,2017:920-923. [25]XUAN D M,WANG J Y,YU H,et al.Application of priorknowledge in deep learning[J].Computer Engineering and Design,2015,36(11):3087-3091. [26]SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston:IEEE,2015:1-9. [27]DENG J,DONG W,SOCHER R,et al.ImageNet:A large-scale hierarchical image database[C]//IEEE Conference on Computer Vision & Pattern Recognition.Miami:IEEE,2009:248-255. [28]STEWART R,ERMON S.Label-Free Supervision of NeuralNetworks with Physics and Domain Knowledge[C]//Procee-dings of the Thirty-First AAAI Conference on Artificial Intelligence.California:AAAI,2017:2576-2582. [29]SCHLOSSER P,DAVID M,ARENS M.Investigation on Combining 3D Convolution of Image Data and Optical Flow to Ge-nerate Temporal Action Proposals[C]//2019 IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition Workshops(CVPRW).Long Beach:IEEE,2019:2448-2456. [30]YANG C,XU Y,SHI J,et al.Temporal Pyramid Network for Action Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE,2020:588-597. |
[1] | 蒋宗礼, 樊珂, 张津丽. 基于生成对抗网络和元路径的异质网络表示学习[J]. 计算机科学, 2022, 49(1): 133-139. |
[2] | 肖丁, 张玙璠, 纪厚业. 基于多头注意力机制的用户窃电行为检测[J]. 计算机科学, 2022, 49(1): 140-145. |
[3] | 祝一帆, 王海涛, 李可, 吴贺俊. 一种高精度路面裂缝检测网络结构:Crack U-Net[J]. 计算机科学, 2022, 49(1): 204-211. |
[4] | 方仲礼, 王喆, 迟子秋. 面向多标签小样本学习的双流重构网络[J]. 计算机科学, 2022, 49(1): 212-218. |
[5] | 牛富生, 郭延哺, 李维华, 刘文洋. 基于序列特征融合的蛋白质可溶性预测[J]. 计算机科学, 2022, 49(1): 285-291. |
[6] | 董晓梅, 王蕊, 邹欣开. 面向推荐应用的差分隐私方案综述[J]. 计算机科学, 2021, 48(9): 21-35. |
[7] | 周新民, 胡宜桂, 刘文洁, 孙荣俊. 基于多模态多层级数据融合方法的城市功能识别研究[J]. 计算机科学, 2021, 48(9): 50-58. |
[8] | 钱梦薇, 过弋. 融合偏置深度学习的距离分解Top-N推荐算法[J]. 计算机科学, 2021, 48(9): 103-109. |
[9] | 徐涛, 田崇阳, 刘才华. 基于深度学习的人群异常行为检测综述[J]. 计算机科学, 2021, 48(9): 125-134. |
[10] | 张新峰, 宋博. 一种基于改进三元组损失和特征融合的行人重识别方法[J]. 计算机科学, 2021, 48(9): 146-152. |
[11] | 林椹尠, 张梦凯, 吴成茂, 郑兴宁. 利用生成对抗网络的人脸图像分步补全法[J]. 计算机科学, 2021, 48(9): 174-180. |
[12] | 黄晓生, 徐静. 基于PCANet的非下采样剪切波域多聚焦图像融合[J]. 计算机科学, 2021, 48(9): 181-186. |
[13] | 田野, 陈宏巍, 王法胜, 陈兴文. 室内移动机器人的SLAM算法综述[J]. 计算机科学, 2021, 48(9): 223-234. |
[14] | 谢良旭, 李峰, 谢建平, 许晓军. 基于融合神经网络模型的药物分子性质预测[J]. 计算机科学, 2021, 48(9): 251-256. |
[15] | 冯霞, 胡志毅, 刘才华. 跨模态检索研究进展综述[J]. 计算机科学, 2021, 48(8): 13-23. |
|