计算机科学 ›› 2020, Vol. 47 ›› Issue (12): 18-24.doi: 10.11896/jsjkx.201200055

• 复杂系统的软件工程和需求工程* • 上一篇    下一篇

用户如何看待产品中的预测分析功能?——面向非功能性需求的调研报告

杨经纬1, 魏子麒2, 刘璘2   

  1. 1 加州州立大学萨克拉门托分校计算机科学系 加利福尼亚 萨克拉门托 95819
    2 清华大学软件学院北京信息科学与技术国家研究中心 北京 100084
  • 收稿日期:2020-09-05 修回日期:2020-10-30 出版日期:2020-12-15 发布日期:2020-12-17
  • 通讯作者: 魏子麒(weizq@tsinghua.edu.cn)
  • 作者简介:yang@csus.edu
  • 基金资助:
    百度-清华大学软件学院AI医疗合作项目

What Users Think about Predictive Analytics?——A Domestic Survey on NFRs

YANG Jing-wei1, WEI Zi-qi2, LIU Lin2   

  1. 1 Department of Computer ScienceCalifornia State University-Sacramen to Sacramen to California 95819USA
    2 School of Software Beijing National Research Center for Information Science and Technology Tsinghua University Beijing 100084,China
  • Received:2020-09-05 Revised:2020-10-30 Online:2020-12-15 Published:2020-12-17
  • About author:YANG Jing-wei,born in 1983Ph.Dassistant professor.His main research interests include requirements engineeringhuman-computer interactionand data &knowledge engineering.
    WEI Zi-qi,born in 1986Ph.D.His main research interests include computing theoryhealth ageing and big data techniques in health care.
  • Supported by:
    Baidu-Tsinghua School of Software Medical AI Cooperation Project.

摘要: 随着近年来数据分析技术的发展预测分析功能被嵌入到众多互联网商业产品中为企业带来了巨大的服务收益.然而这类功能影响哪些非功能性目标?这类功能对普遍关注的非功能性目标包括软件的可用性、性能和透明度以及用户的隐私乃至个人身心健康等的影响如何?在软件服务商进一步拓展这类技术的应用之前我们需要对预测分析功能所带来的直接和间接影响进行进一步了解.首先对来自国内的565名受访者进行了问卷调研搜集了他们对预测分析功能应用的反馈.初步的分析结果表明尽管许多消费者认可预测分析功能所带来的便利但他们也表示了对产品的透明度、个人生活和隐私等方面的顾虑.在特定情况下由于存在这些顾虑部分用户会选择停止使用预测分析功能甚至放弃使用整个产品.基于调研结果从需求工程的视角讨论了如何把预测分析技术与产品进行有机融合以减轻和消除用户的顾虑同时充分挖掘预测分析技术的价值.

关键词: 用户, 接纳度, 问卷调研, 非功能性需求, 预测分析

Abstract: With the recent advancement in data sciencepredictive analytics (PA) functions have been built into many commercial productswhich affects several "non-functional" goalsincluding usabilityperformanceand transparency of the softwareas well as privacy and well-being of the user.The direct and indirect consequences are yet to be understood better before the service providers take any further actions in response.In this worka domestic survey is conducted with a sample set of 565 domestic respondents from Chinaon their acceptance of applications with PA.The result shows that many consumers recognize the benefit of PA featuresbut they are not without concerning about transparencyprivacyand personal well-being.Once users are highly concernedthey may choose not to use these features or even give up the products altogether.Based on the survey resultthis paper discusses requirements engineering can help the stakeholders make better decisions related to PA adoption and designand how RE tools can help address user concerns related to PA.

Key words: Consumer, Acceptance, Survey, Non-functional requirements (NFRs), Predictive analytics (PA)

中图分类号: 

  • TP391
[1] ECKERSON W.Predictive Analytics:Extending the Value ofYour Data Warehousing Investment,First Quarter 2007 TDWI Best Practices Report[R].2007.[2020-09-15].
[2] Grand View Research,Inc.,Predictive Analytics Market Size&Share,Industry Report,2019-2025[R].2019.[2020-09-15].
[3] KSHETRI N.Big Data's impact on privacy,security and consumer welfare[J].Telecommunications Policy,2014(38):1134-1145.
[4] KING N,JESSEN P.Profiling the mobile customer-Privacy con-cerns when behavioural advertisers target mobile phones-part I[J].Computer Law &Security Review,2010,26(5):455-478.
[5] KAMARINOU D,MILLARD C,SINGH J.Machine Learningwith Personal Data[R].Queen Mary School of Law Legal Studies Research paper No:247,2016.
[6] ROTHCHILD J.Research Handbook on Electronic CommerceLaw[M].Edward Elgar Publishing,2016.
[7] WEINSTEIN A,LEJOYEUX M.Internet addiction or excessive internet use[J].The American Journal of Drug and Alcohol Abuse,2010,36(5):277-283.
[8] WANG X,KNEAREM T,GUI F,et al.The Safety Net of Aging in Place:Understanding How Older Adults Construct,Develop,and Maintain Their Social Circles[C]//Proc.12th EAI International Conference on Pervasive Computing Technologies for Healthcare.ACM Press,2018:191-200.
[9] MOORE G.Crossing the Chasm,Harper Business Essentials[M].Harper Business Essentials,1991.
[10] HAWS K,BEARDEN W.Dynamic pricing and consumer fairness perceptions[J].Journal of Consumer Research,2006,33(3):304-311.
[11] EREVELLES S,FUKAWA N,SWAYNE L.Big Data consumer analytics and the transformation of marketing[J].Journal of Business Research,2016,69(2):897-904.
[12] JIANG Z,BENBASAT I.Virtual Product Experience:Effects of Visual &Functionality Control of Products on Perceived Diagnosticity in Electronic Shopping[J].Journal of Management Information Systems,2004,21(3):111-147.
[13] DAUGHERTY T,LI H,BIOCCA F.Experiential Ecommerce:A Summary of Research Investigating the Impact of Virtual Experience on Consumer Learning[J].Online Consumer Psychology,2005,25(7):568-586.
[14] NAWAZ A,VVEINHARDT J,AHMED R.Impact of Word of Mouth on Consumer Buying Decision[J].European Journal of Business and Management,2014,6(31):394-403.
[15] AL MANA A,MIRZ A A.The impact of electronic word ofmouth on consumers' purchasing decisions[J].International Journal of Computer Applications,2013,82:23-31.
[16] HUANG Z,ZENG D,CHEN H.A comparative study of recommendation algorithms in e-commerce applications[J].IEEE Intelligent Systems,2007,22(5):68-78.
[17] LEE J,SUN M,LEBANON G.Prea:Personalized recommendation algorithms toolkit[J].Journal of Machine Learning Research,2012,13:2699-2703.
[18] XIE H,YANG J,CHANG C,et al.A Statistical Analysis Approach to Predict User's Changing Requirements for Software Service Evolution[J].Journal of Systems and Software,2017,132:147-164.
[19] BHARATI P,CHAUDHURY A.An empirical investigation of decision-making satisfaction in web-based decision support systems[J].Decision Support Systems,2004,37(2):187-197.
[20] DELONE W,MCLEAN E.The DeLone and McLean model of information systems success:A ten-year update[J].Journal of Management Information Systems,2003,19:9-30.
[21] CHUNG L,NIXON B A,YU E,et al.Non-functional require-ments in software engineering[M].Springer Science+Business Media,2012.
[22] ISO/IEC 25010.Systems and software engineering-Systems and software Quality Requirements and Evaluation (SQuaRE)-System and software quality models[S].2011.
[23] WATSON H.Tutorial.Big data analytics:Concepts,technolo-gies,and applications[J].Communications of the Association for Information Systems,2014,34(1).
[24] BAWDEN D,ROBINSON L.The dark side of information:overload,anxiety and other paradoxes and pathologies[J].Journal of Information Science,2009,35(2):180-191.
[25] YU E.Towards modelling and reasoning support for early-phase requirements engineering[C]//3rd IEEE International Symposium on Requirements Engineering.1997.
[26] VAN LAMSWEERDE A.Goal-Oriented Requirements Engi-neering:A Guided Tour[C]//5th IEEE International Symposium on Requirements Engineering.2001:249-263.
[27] HOSONO S,HARA T,SHIMOMURAY,et al.Prioritizingservice functions with non-functional requirements[C]//CIRP Industrial Product-Service Systems Conference.2010:133-140.
[28] PRUITT J,ADLIN T.The persona lifecycle:keeping people in mind throughout product design[M].Morgan Kaufmann Publishers Inc.,2010.
[29] KLINE R.Principles and Practice of Structural Equation Modeling[M].Guilford Publications,2015.
[30] HAIR J.Multivariate Data Analysis[M].Pearson Education,2010.
[31] MYERS L,SIROIS M.Spearman Correlation Coefficients,Differences between[M]//Encyclopedia of Statistical Sciences.John Wiley &Sons Inc,2004.
[32] WESTFALL P,YOUNG S.Resampling-based multiple testing:Examples and methods for p-value adjustment[M].Wiley-Interscience,1993.
[33] ELAHI G,YU E.Comparing alternatives for analyzing requirements trade-offs-In the absence of numerical data[J].Information and Software Technology ,2012,54(6):517-530.
[1] 唐文君, 刘岳, 陈荣. 移动边缘计算中的动态用户分配方法[J]. 计算机科学, 2021, 48(1): 58-64.
[2] 王瑞平, 贾真, 刘畅, 陈泽威, 李天瑞. 基于DeepFM的深度兴趣因子分解机网络[J]. 计算机科学, 2021, 48(1): 226-232.
[3] 冯安然, 王旭仁, 汪秋云, 熊梦博. 基于PCA和随机树的数据库异常访问检测[J]. 计算机科学, 2020, 47(9): 94-98.
[4] 袁得嵛, 章逸钒, 高见, 孙海春. 基于用户特征提取的新浪微博异常用户检测方法[J]. 计算机科学, 2020, 47(6A): 364-368.
[5] 李建军, 付佳, 杨玉, 侯跃, 汪校铃, 荣欣. 基于用户兴趣的农产品推荐技术研究[J]. 计算机科学, 2020, 47(6A): 521-525.
[6] 段文静, 姜瑛. 基于用户反馈的APP软件缺陷识别[J]. 计算机科学, 2020, 47(6): 44-50.
[7] 白玮, 潘志松, 夏士明, 成昂轩. 基于遗传算法的网络安全配置自动生成框架[J]. 计算机科学, 2020, 47(5): 306-312.
[8] 刘晓飞, 朱斐, 伏玉琛, 刘全. 基于用户偏好特征挖掘的个性化推荐算法[J]. 计算机科学, 2020, 47(4): 50-53.
[9] 徐海燕,姜瑛. 基于用户评论的代码质量识别与分析[J]. 计算机科学, 2020, 47(3): 41-47.
[10] 胡建伟,徐明洋,崔艳鹏. 改进的TLS指纹增强用户行为安全分析能力[J]. 计算机科学, 2020, 47(3): 287-291.
[11] 钟雅,郭渊博,刘春辉,李涛. 内部威胁检测中用户属性画像方法与应用[J]. 计算机科学, 2020, 47(3): 292-297.
[12] 王莹, 郑丽伟, 张禹尧, 张晓妘. 面向中文APP用户评论数据的软件需求挖掘方法[J]. 计算机科学, 2020, 47(12): 56-64.
[13] 张敏军, 华庆一. 基于概率矩阵分解算法的社交网络用户兴趣点个性化推荐[J]. 计算机科学, 2020, 47(12): 144-148.
[14] 李霄, 曲阳, 李辉, 郭世凯. 基于用户关系的在线问答平台用户重要性评估方法[J]. 计算机科学, 2020, 47(11A): 430-436.
[15] 谢志杰, 张旻, 李振汉, 王红军. 基于攻击算法的海量真实用户口令数据分析[J]. 计算机科学, 2020, 47(11): 48-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞博,金乾坤,合尼古力·吾买尔,齐兴斌. 软件定义网络中基于网络切片和ILP模型的路由方案[J]. 计算机科学, 2018, 45(4): 143 -147 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151 .
[3] 郑秀林,宋海燕,付伊鹏. MORUS-1280-128算法的区分分析[J]. 计算机科学, 2018, 45(4): 152 -156 .
[4] 梁俊斌,周翔,王田,李陶深. 移动低占空比无线传感网中数据收集的研究进展[J]. 计算机科学, 2018, 45(4): 19 -24 .
[5] 崔建京,龙军,闵尔学,于洋,殷建平. 同态加密在加密机器学习中的应用研究综述[J]. 计算机科学, 2018, 45(4): 46 -52 .
[6] 王正理,谢添,何琨,金燕. 考虑时间因素的0-1背包调度问题[J]. 计算机科学, 2018, 45(4): 53 -59 .
[7] 李小薪,李晶晶,贺霖,刘志勇. 基于噪声空间结构嵌入和高维梯度方向嵌入的鲁棒人脸识别方法[J]. 计算机科学, 2018, 45(4): 285 -290 .
[8] 戴文静, 袁家斌. 隐含子群问题的研究现状[J]. 计算机科学, 2018, 45(6): 1 -8 .
[9] 杨沛安, 武杨, 苏莉娅, 刘宝旭. 网络空间威胁情报共享技术综述[J]. 计算机科学, 2018, 45(6): 9 -18 .
[10] 邓霞, 常乐, 梁俊斌, 蒋婵. 移动机会网络组播路由的研究进展[J]. 计算机科学, 2018, 45(6): 19 -26 .