计算机科学 ›› 2022, Vol. 49 ›› Issue (1): 115-120.doi: 10.11896/jsjkx.201200192

• 数据库&大数据&数据科学 • 上一篇    下一篇

融合时间特性和用户偏好的卷积序列化推荐

陈晋鹏, 胡哈蕾, 张帆, 曹源, 孙鹏飞   

  1. 北京邮电大学计算机学院(国家示范性软件学院) 北京100876
  • 收稿日期:2020-12-22 修回日期:2021-04-19 出版日期:2022-01-15 发布日期:2022-01-18
  • 通讯作者: 陈晋鹏(jpchen@bupt.edu.cn)
  • 基金资助:
    国家自然科学基金(61702043)

Convolutional Sequential Recommendation with Temporal Feature and User Preference

CHEN Jin-peng, HU Ha-lei, ZHANG Fan, CAO Yuan, SUN Peng-fei   

  1. School of Computer Science(National Pilot Software Engineering School),Beijing University of Posts and Telecommunications,Beijing 100876, China
  • Received:2020-12-22 Revised:2021-04-19 Online:2022-01-15 Published:2022-01-18
  • About author:CHEN Jin-peng,born in 1985,Ph.D,associate professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include social network analysis,recommendation system,data mining,and machine lear-ning.
  • Supported by:
    National Natural Science Foundation of China(61702043).

摘要: 推荐系统如今已被广泛应用于生活中,大大便利了人们的生活。传统的推荐方法主要是针对用户与物品的交互情况进行分析,分析用户与物品的历史记录,得到的只是用户过去对于物品的喜好程度。序列化推荐系统通过分析用户近一段时间与物品交互的序列,来考虑用户前后行为的关联性,能够获得用户短期内对物品的喜好程度。然而,序列化方法强调的是用户与物品在短期的联系,忽视了物品属性之间存在的关系。针对以上问题,文中提出了融合时间特性和用户偏好的卷积序列化推荐(Convolutional Embedding Recommendation with Time and User Preference,CERTU)模型。该模型能够分析物品之间存在的多样性关系,从而捕获用户对物品随时间变化的动态喜好程度这一特性。除此之外,该模型进一步考虑了物品序列中存在的单个物品和多个物品对下一物品推荐的影响。实验结果表明,CERTU模型的性能优于当前的基线方法。

关键词: 卷积神经网络, 时间特性, 推荐系统, 序列化推荐, 用户兴趣

Abstract: At present,recommendation system has been widely used in our life,which greatly facilitates people's life.The traditional recommendation method mainly analyzes the interaction between users and items and considers the history of users and items,and only obtains the user's preference for items in the past.The sequential recommendation system,by analyzing the interaction sequence of items in the recent period of time and considering the relevance between the user's previous and subsequent behaviors,can obtain user's preference for items in short term.It emphasizes the short-term connection between user and item,while ignoring the relationship between the attributes of the item.Aiming at the above problems,this paper presents a convolutional embedding recommendation with time and user preference (CERTU) model.This model can analyze the relations between items.It can obtain dynamic changes in user preferences.The model also considers the influence of individual item and multiple items to the next item.Experiments show that the performance of CERTU model is better than that of the current baseline method.

Key words: Convolutional neural network, Recommendation system, Sequential recommendation, Temporal feature, User preferences

中图分类号: 

  • TP311
[1]WANG C Y,ZHANG M,MA W Z,et al.Make It a Chorus:Knowledge -and Time-aware Item Modeling for Sequential Re-commendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:109-118.
[2]STEFFEN R,CHRISTOPH F,LARS S.Factorizing persona-lized markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web.2010:811-820.
[3]WANG P F,GUO J F,LAN Y Y,et al.Learning hierarchical representation model for next basket recommendation[C]//Proceedings of the 38th International ACM SIGIR Conference on Reasearch and Development in Information Retrieval.2015:403-412.
[4]RUINING H,JULIAN M.Fusing Similarity Models with Mar-kov Chains for Sparse Sequential Recommendation[C]//2016 IEEE 16th International Conference on Data Mining (ICDM).2016:191-200.
[5]RUSLAN S,ANDRIY M,GEOFFREY H.Restricted Boltz-mann machines for collaborative filtering[C]//Proceedings of the 24th International Conference and Machine Learning.2007:791-798.
[6]LECUN Y,BOTTOU L,BENGIO Y.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[7]ZHENG L,NOROOZI V,YU P S.Joint Deep Modeling of Users and ItemsUsing Reviews for Recommendation[C]//Proceedings of the Tenth ACM International Conference on Web Search and Data Mining.2017:425-434.
[8]TANG J X,WANG K.Personalized Top-N Sequential Recom-mendation via Convolutional Sequence Embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.2018:565-573.
[9]SUN K,QIAN T,CHEN T,et al.Where to Go Next:Modeling Long-and Short-Term User Preferences for Point-of-Interest Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:214-221.
[10]GUO Q,SUN Z,ZHANG J,et al.An Attentional Recurrent Neural Network for Personalized Next Location Recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:83-90.
[11]LIU D,LIAN J,WANG S,et al.KRED:Knowledge-Aware Do-cument Representation for News Recommendations[C]//Fourteenth ACM Conference on Recommender Systems.2020:200-209.
[12]ZHAN W J,HONG Z L,FANG L P,et al.Collaborative Filtering Recommendation Algorithm Based on Adversarial Learning[J].Computer Science,2021,48(7):172-177.
[13]LIANG H H,GU T L,BIN C Z,et al.Combining User-end and Item-end Knowledge Graph Learning for Personalized Recommendation[J].Computer Science,2021,48(5):109-116.
[14]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26:2787-2795.
[15]STEFFEN R,CHRISTOPH F,ZENO G.BPR:Bayesian perso-nalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.2009:452-461.
[16]ALEXANDROS K,XAVIER A,LINAS B.Multiverse recom-mendation:n-dimensional tensor factorization for context-aware collaborative filtering[C]//Proceedings of the 4th ACM Confe-rence on Recommender Systems.2010:79-86.
[17]BALÁZS H,ALEXANDROS K,LINAS B.Session-based re-commendations with recurrent neural networks[C]//International Conference on Learning Representations.2016:1-10.
[18]PABLO L,CHEN L,YU H.Modeling user session and intent with an attention-based encoder-decoder architecture[C]//Proceedings of the 11th ACM Conference on Recommender Systems.2017:147-151.
[19]ZHANG Y F,AI Q Y,CHEN X,et al.Learning over know-ledge-base embeddings for recommendation[C]//Special Interest Group on Information Retrieval.2018:8-12.
[20]WANG C Y,ZHANG M,MA W Z,et al.Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recommender Systems[C]//The World Wide Web Conference.2019:1977-1987.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[5] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[6] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[7] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[10] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[11] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[12] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[13] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[14] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[15] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!