计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 239-246.doi: 10.11896/jsjkx.210200119

• 计算机图形学&多媒体 • 上一篇    下一篇

基于改进YOLOv3的机坪工作人员反光背心检测研究

徐涛, 陈奕仁, 吕宗磊   

  1. 中国民航大学计算机科学与技术学院 天津 300000
  • 收稿日期:2021-02-19 修回日期:2021-07-02 发布日期:2022-04-01
  • 通讯作者: 吕宗磊(zllv@cauc.edu.cn)
  • 作者简介:(txu@cauc.edu.cn)
  • 基金资助:
    中央高校基本科研业务费项目中国民航大学专项(3122021088)

Study on Reflective Vest Detection for Apron Workers Based on Improved YOLOv3 Algorithm

XU Tao, CHEN Yi-ren, LYU Zong-lei   

  1. School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300000, China
  • Received:2021-02-19 Revised:2021-07-02 Published:2022-04-01
  • About author:XU Tao,born in 1962,professor,is a member of China Computer Federation.His main research interests include intelligent information processing and so on.LYU Zong-lei,born in 1981,Ph.D,asso-ciate professor,is a member of China Computer Federation.His main research interests include machine lear-ning and so on.
  • Supported by:
    This work was supported by the Fundamental Research Funds for Central Universities of the Civil Aviation University of China(3122021088).

摘要: 文中提出了一种基于先验知识和改进YOLOv3算法的机坪工作人员反光背心检测算法。该方法针对现有目标检测方法速度偏低的问题,基于先验知识生成反光背心检测候选区域来替换初始候选区域,以减少检测区域面积,使用Darknet-37替代Darknet-53作为骨干网络进行特征提取,提高了算法的检测速度。针对反光背心在画面中所占面积偏小,且辨识难度较大的问题,在检测模型中加入空间金字塔池化结构(SPP),从而实现特征增强,并将检测尺度提升至4个,以进行多尺度特征融合。使用K-means++算法对标注边界框尺寸重新进行聚类分析,并用聚类结果替换YOLOv3初始Anchor值。选取GIoU作为损失函数以提高定位精准度。实验结果表明,所提出的新型目标检测算法在自建的反光背心数据集上取得了优于YOLOv3的检测结果,精准率和召回率分别达到了97.6%和96.1%,检测速度达到了28.4帧/s,有效解决了原模型中存在的定位不准、漏检、检测速度偏低等问题,在保证检测精度较高的情况下满足了机坪目标检测在实际运用中的实时性要求。

关键词: 反光背心检测, 空间金字塔池化, 目标检测, 实时监测, 特征融合

Abstract: This paper proposes a reflective vest detection algorithm for apron staff based on prior knowledge and improved YOLOv3 algorithm.Aiming at the problem of the existing target detection method with low speed, the reflective vest detection candidate region is generated based on prior knowledge to replace the initial candidate region, so as to reduce the detection area.Darknet-37 is used to replace Darknet-53 as the backbone network for feature extraction, which improves the detection speed of the algorithm.Aiming at the problem that the reflective vest occupies a small area in the picture and is difficult to identify, a spatial pyramid pooling structure (SPP) is added into the detection model to realize feature enhancement, and the detection scale is increased to four for multi-scale feature fusion.The K-means++algorithm is used to perform cluster analysis again on the size of labeled bounding box, and the clustering result is used to replace the initial Anchor value of Yolov3.GIoU is selected as the loss function to improve the positioning accuracy.Experimental results show that the proposed new target detection algorithm in the self-built reflective vest data set is better than YOLOv3 test results, the precision rate and recall rate reach 97.6% and 96.1%, detection rate reach 28.4 frames/s, which effectively solves the problems such as inaccurate positioning, missed detection and low detection speed existing in the original model, and meets the real-time requirements in the practical application of apron target detection while ensuring a high detection accuracy.

Key words: Feature fusion, Object detection, Real-time detection, Reflective vest detection, Spatial pyramid pooling

中图分类号: 

  • TP391.4
[1] ZHAO Y Q,RAO Y,DONG S P,et al.Survey on deep learning object detection[J].Journal of Image and Graphics,2020,25(4):629-654.
[2] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448.
[3] REN S,HE K,GRISHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.2015:91-99.
[4] GRICHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[5] HE K M,GKIOXARI G,DOLLAR P,et al.Mask R-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):386-397.
[6] CHANU M M.A deep learning approach for object detectionand instance segmentation using mask RCNN[J].Journal of Advanced Research in Dynamical and Control Systems,2020,12(SP3):95-104.
[7] REDMON J,DIVVALA S,GIRSHICK R,et al.You onlylookonce:Unified,real-timeobject detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Re-cognition.2016:779-788.
[8] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]//Proceedings of the 2016 European Conference on Computer Vision.Cham:Springer,2016:21-37.
[9] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7263-7271.
[10] REDMON J,FARHADI A.YOLOv3:an incremental impro- vement[J].arXiv:1804.02767,2018.
[11] XU Z F,JIA R S,SUN H M,et al.Light-YOLOv3:fast method for detecting green mangoes in complex scenes using picking robots[J].Applied Intelligence,2020(6):1-18.
[12] PANG L,LIU H,CHEN Y,et al.Real-time Concealed Object Detection from Passive Millimeter Wave Images Based on the YOLOv3 Algorithm[J].Sensors(Basel,Switzerland),2020,20(6):44-50.
[13] ZHAO L,LI S.Object Detection Algorithm Based on Improved YOLOv3[J].Electronics,2020,9(3):537.
[14] DENG Z,YANG R,LAN R,et al.SE-IYOLOv3:An Accurate Small Scale Face Detector for Outdoor Security[J].Mathema-tics,2020,8(1):93.
[15] DENG H,CHENG J,LIU T,et al.Research on iron surface crack detection algorithm based on improve YOLOv4 network[C]//Journal of Physics:Conference Series,2nd International Conference on Artificial Intelligence and Computer Science,Hangzhou,Zhejiang,China,2020:25-26.
[16] GU Y H,CAO M T,XIU J Y,et al.Violation Detection algorithm based on YOLOv4 Network[J].Journal of Chongqing University of Technology (Natural Science),2021,35(8):114-121.
[17] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2019:1314-1324.
[18] PAN M Y,SONG H H,ZHANG K H,et al.Learning Global Guided Progressive Feature Aggregation Lightweight Network for Salient Object Detection[J].Computer Science,2021,48(6):103-109.
[19] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[20] BACHEM O,LUCIC M,HASSANI S H,et al.Approximate k-means++in sublinear time[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,2016:1459-1467.
[21] BACHEM O,LUCIC M,HASSANI H,et al.Fast and provably good seedings for k-means[C]//30th Conference on Neural Information Processing Systems,2016:55-63.
[22] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:658-666.
[23] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:to-wards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[1] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[2] 王灿, 刘永坚, 解庆, 马艳春.
基于软标签和样本权重优化的Anchor Free目标检测算法
Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization
计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240
[3] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[4] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[5] 孟月波, 穆思蓉, 刘光辉, 徐胜军, 韩九强.
基于向量注意力机制GoogLeNet-GMP的行人重识别方法
Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism
计算机科学, 2022, 49(7): 142-147. https://doi.org/10.11896/jsjkx.210600198
[6] 郁舒昊, 周辉, 叶春杨, 王太正.
SDFA:基于多特征融合的船舶轨迹聚类方法研究
SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion
计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253
[7] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
[8] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[9] 马宾, 付永康, 王春鹏, 李健, 王玉立.
基于GDIoU损失函数的YOLOv4绝缘子高效定位算法
High Performance Insulators Location Scheme Based on YOLOv4 with GDIoU Loss Function
计算机科学, 2022, 49(6A): 412-417. https://doi.org/10.11896/jsjkx.210600089
[10] 陈永平, 朱建清, 谢懿, 吴含笑, 曾焕强.
基于外接圆半径差损失的实时安全帽检测算法
Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss
计算机科学, 2022, 49(6A): 424-428. https://doi.org/10.11896/jsjkx.220100252
[11] 孙洁琪, 李亚峰, 张文博, 刘鹏辉.
基于离散小波变换的双域特征融合深度卷积神经网络
Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation
计算机科学, 2022, 49(6A): 434-440. https://doi.org/10.11896/jsjkx.210900199
[12] 蓝凌翔, 池明旻.
基于特征注意力融合网络的遥感变化检测研究
Remote Sensing Change Detection Based on Feature Fusion and Attention Network
计算机科学, 2022, 49(6): 193-198. https://doi.org/10.11896/jsjkx.210500058
[13] 陈佳舟, 赵熠波, 徐阳辉, 马骥, 金灵枫, 秦绪佳.
三维城市场景中的小物体检测
Small Object Detection in 3D Urban Scenes
计算机科学, 2022, 49(6): 238-244. https://doi.org/10.11896/jsjkx.210400174
[14] 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇.
深度卷积神经网络图像实例分割方法研究进展
Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network
计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038
[15] 范新南, 赵忠鑫, 严炜, 严锡君, 史朋飞.
结合注意力机制的多尺度特征融合图像去雾算法
Multi-scale Feature Fusion Image Dehazing Algorithm Combined with Attention Mechanism
计算机科学, 2022, 49(5): 50-57. https://doi.org/10.11896/jsjkx.210400093
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!