计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 296-302.doi: 10.11896/jsjkx.210300286
所属专题: 密码学 虚拟专题
刘林云, 陈开颜, 李雄伟, 张阳, 谢方方
LIU Lin-yun, CHEN Kai-yan, LI Xiong-wei, ZHANG Yang, XIE Fang-fang
摘要: 旁路建模分析方法可以有效攻击密码实现,其中基于卷积神经网络的旁路密码分析方法(CNNSCA)可以高效地进行密码攻击,甚至能够攻击有防护的加密算法设备。针对现阶段旁路密码分析建模方法的研究现状,对比分析了几种CNNSCA的模型特点和性能差异,并针对典型CNN模型结构以及旁路信号公共数据集ASCAD,通过模型对比及实验结果分析不同的CNN网络建模方法的效果,进而分析影响CNNSCA方法的性能因素、基于卷积神经网络的旁路建模方法的优势。由分析可知,基于VGG变体的CNNSCA在攻击各种情况的目标数据集时泛化性、鲁棒性表现最好,但使用的CNN模型训练程度及超参数设置是否最适用于SCA场景并未得到验证。今后研究者可通过调整CNN模型的各种超参数,使用数据增强技术,结合Imagenet大赛中优秀CNN网络等手段,来提升CNNSCA的分类准确率和破密性能,探索最适用于SCA场景的CNN模型是未来的发展趋势。
中图分类号:
[1]MANGARD S,OSWALD E,POPP T.Energy analysis attack[M].Beijing:Science Press,2010. [2]KOCHER P,JAFFE J,JUN B.Differential power analysis[C]//Annual International Cryptology Conference.Berlin:Springer,1999:388-397. [3]BRIER E,CLAVIER C,OLIVIER F.Correlation power analysis with a leakage model[C]//International Workshop on Cryptographic Hardware and Embedded Systems.Berlin:Springer,2004:16-29. [4]GIERLICHS B,BATINA L,TUYLS P,et al.Mutual information analysis[C]//International Workshop on Cryptographic Hardware and Embedded Systems.Berlin:Springer,2008:426-442. [5]CHARI S,RAO J R,ROHATGI P.Template attacks[C]//International Workshop on Cryptographic Hardware and Embedded Systems.Berlin:Springer,2002:13-28. [6]LERMAN L,BONTEMPI G,MARKOWITCH O.Power analysis attack:An approachbased on machine learning[J].International Journal of Applied Cryptography:IJACT,2014,3(2):97-115. [7]PICEK S,HEUSER A,GUILLEY S.Template attack versus Ba-yes classifier[J].Journal of Cryptographic Engineering,2017,7(4):1-9. [8]CAGLI E,DUMAS C,PROUFF E.Convolutional Neural Net-works with Data Augmentation Against Jitter-Based Countermeasures Profiling Attacks Without Preprocessing[C]//Cryptographic Hardware and Embedded Systems CHES 2017 19th International Conference.Taipei,Taiwan,2017:45-68. [9]CHOUDARY O,KUHN M G.Efficient template attacks[C]//International Conference on Smart Card Research and Advanced Applications.Springer,2013:253-270. [10]LERMAN L,POUSSIER R,BONTEMPI G,et al.Template Attacks vs.Machine Learning Revisited (and the Curse of Dimensionality in Side-Channel Analysis)[C]//Constructive Side-Channel Analysis and Secure Design-6th International Workshop,COSADE 2015.Berlin,Germany,2015:20-33. [11]LERMAN L,BONTEMPI G,MARKOWITCH O.A machinelearning approach against a masked AES-Reaching the limit of side-channel attacks with a learning model[J].Jounal of Cryptographic Engineering,2015,5(2):123-139. [12]PICEK S,HEUSER A,JOVIC A,et al.Climbing down the hierarchy:Hierarchical classification for machine learning side-channel attacks[C]//9th International Conference on Cryptology in Africa.Springer,2017:61-78. [13]HEUSER A,ZOHNER M.Intelligent Machine Homicide Brea-king Cryptographic Devices Using Support Vector Machines[C]//COSADE.Springer,2012:249-264. [14]HOSPODAR G,GIERLICHS B,DE MULDER E,et al.Ma-chine learning in side-channel analysis:a first study[J].Journal of Cryptographic Engineering,2011,1(4):293-302. [15]PICEK S,HEUSER A,JOVIC A,et al.Side-channel analysis and machine learning:A practical perspective[C]//2017 International Joint Conference on Neural Networks,IJCNN 2017.Anchorage,AK,USA,2017:4095-4102. [16]MAGHREBI H,PORTIGLIATTI T,PROUFF E.Breaking cryp-tographic implementations using deep learning techniques[C]//6th International Conference on Security,Privacy,and Applied Cryptography Engineering(SPACE 2016).Hyderabad,India,2016:3-26. [17]BENGIO Y,GOODFELLOW I,COURVILLE A.Deep learning[M].MIT press,2017:170-200. [18]PICEK S,SAMIOTIS,I P,HEUSER A,et al.On the performance of convolutional neural networks for side-channel analysis[OL].https://eprint.iacr.org/2018/004. [19]BENADJILA R,PROUFF E,STRULLU R,et al.Deep learning for side-channel analysis and introduction to ASCAD database[J].Journal of Cryptographic Engineering,2019,10. [20]HEUSER A,PICEK S,GUILLEY S,et al.Lightweight ciphers and their side-channel resilience[J].IEEE Transactions on Computers,2017,69(10):1434-1448. [21]HUANG J,WANG Y.Experimental Research on Convolutional Neural Network Structure Suitable for Side Channel Analysis[J].Journal of Chengdu University of Information Technology,2019(5):449-456. [22]MAGHREBI H.Deep learning based side channel attacks inpractice[J/OL].IACR Cryptol.ePrint Arch.,2019:578.https://eprint.iacr.org/2019/578. [23]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [24]HUBEL D H,WIESEL T N.Receptive Fields And Functional Aechitecture of Monkey Striate Cortex[J].The Journal of Phy-siology,1968,195(1):215-243. [25]LECUN Y,BENGIO Y.Convolutional networks for images,speech,and time series[M]//The Handbook of Brain Theory and Neural Networks.MIT Press,1998:255-258. [26]SHI H,YANG Q,LIU S H,et al.Research on information extraction of power grid failure plans based on deep learning[J].Computer Science,2020,47(S2):62-66. [27]YIN W,KANN K,YU M,et al.Comparative Study of CNN and RNN for Natural Language Processing[J].arXIV:1702.01923,2017. [28]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet largescale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [29]GILMORE R,HANLEY N,O’NEILL M.Neural networkbased attack on a masked implementation of AES[C]//2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).2015:106-111. [30]ZOTKIN Y,OLIVIER F,BOURBAO E.Deep Learning vsTemplate Attacks in front of fundamental targets:experimental study[J/OL].IACR.https://xs.dailyheadlines.cc/scholar?q=Deep+Learning+vs+Template+Attacks+in+front+of+fundamental+targets%3A+experimental+study [31]IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015. [32]GOODFELLOW I J,BENGIO Y,COURVILLE A C.DeepLearning[M]//Adaptive Computation and Machine Learning.Cambridge:MIT Press,2016. [33]HAN L Q,KANG Q.Artificial Neural Network Theory,Design and Application——Nerve Cells,Neural Networks and Neural System[J].Journal of Beijing Technology and Business University(Natural Science Edition),2005,23(1):52-52. [34]HAWKINS D M.The problem of overfitting[J].Journal ofChemical Information and Computer Sciences,2004,44(1):1-12. [35]STANDAERT F X,MALKIN T G,YUNG M.A unified framework for the analysis of side-channel key recovery attacks[C]//Annual International Conference on The Theory and Applications of Cryptographic Techniques.Berlin:Springer,2009:443-461. [36]MASURE L,DUMAS C,PROUFF E.A comprehensive study of deep learning for side-channel analysis[J].IACR Transactions on Cryptographic Hardware and Embedded Systems,2020(1):348-375. [37]OORD A V D,DIELEMAN S,ZEN H,et al.Wavenet:A generative model for raw audio[J].arXiv:1609.03499,2016. [38]CAGLI E,DUMAS C,PROUFF E.Convolutional neural networks with data augmentation against jitter-based countermeasures[C]//International Conference on Cryptographic Hardware and Embedded Systems.Cham:Springer,2017:45-68. [39]WONG S C,GATT A,STAMATESCU V,et al.Understanding data augmentation for classification:when to warp?[C]//International Conference on Digital Image Computing:Techniques and Applications (DICTA).IEEE,2016:1-6. [40]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large scale image recognition[J].arXiv:1409.1556,2014. [41]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [42]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [43]MASURE L,DUMAS C,PROUFF E.Gradient visualization for general characterization in profiling attacks[C]//International Workshop on Constructive Side-Channel Analysis and Secure Design.Cham:Springer,2019:145-167. [44]CARBONE M,CONIN V,CORNÉLIE M A,et al.Deep learning to evaluate secure RSA implementations[J].IACR Transactions on Cryptographic Hardware and Embedded Systems,2019(2):132-161. [45]KIM J,PICEK S,HEUSER A,et al.Make some noise.unleashing the power of convolutional neural networks for profiled side-channel analysis[J].IACR Transactions on Cryptographic Hardware and Embedded Systems,2019(3):148-179. [46]CHEN P,WANG P,DONG G F,et al.Side channel attackbased on SincNet[J/OL].Journal of Cryptography.http://kns.cnki.net/kcms/detail /10.1195.TN.20200520.1652.002.html. [47]PERIN G,BUHAN I,PICEK S.Learning when to stop:a mutual information approach to fight overfitting in profiled side-channel analysis [C]//International Workshop on Constructive Side-Channel Analysis and Secure Design.Springer,Cham,2021:53-81. [48]GUO D X,CHEN K Y,ZHANG Y,et al.A new method for attacking encrypted chip templates based on Alexnet convolutional neural network[J].Computer Measurement and Control,2018,26(10):246-249,254. [49]GUO D X,CHEN K Y,ZHANG Y,et al.A new method of attacking encrypted chip templates based on VGGNet convolutional neural network[J].Computer Application Research,2019,36(9):2809-2812,2855. [50]GULLI A,PAL S.Deep learning with Keras[M].Packt Publishing Ltd,2017. [51]ABADI M,AGARWAL A,BARHAM P,et al.Tensor Flow:Large-scale machine learning on heterogeneous systems[OL].https://www.tensorflow.org/.Software available from tensorflow.org. |
[1] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[2] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[3] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[4] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[5] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[6] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[7] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[8] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[9] | 刘月红, 牛少华, 神显豪. 基于卷积神经网络的虚拟现实视频帧内预测编码 Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network 计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179 |
[10] | 徐鸣珂, 张帆. Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法 Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition 计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085 |
[11] | 孙福权, 崔志清, 邹彭, 张琨. 基于多尺度特征的脑肿瘤分割算法 Brain Tumor Segmentation Algorithm Based on Multi-scale Features 计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217 |
[12] | 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述 Survey on Bayesian Optimization Methods for Hyper-parameter Tuning 计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208 |
[13] | 吴子斌, 闫巧. 基于动量的映射式梯度下降算法 Projected Gradient Descent Algorithm with Momentum 计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039 |
[14] | 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行. 基于步态分类辅助的虚拟IMU的行人导航方法 Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification 计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148 |
[15] | 杨玥, 冯涛, 梁虹, 杨扬. 融合交叉注意力机制的图像任意风格迁移 Image Arbitrary Style Transfer via Criss-cross Attention 计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236 |
|