计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 784-789.doi: 10.11896/jsjkx.210400030

• 交叉&应用 • 上一篇    下一篇

基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究

王飞, 黄涛, 杨晔   

  1. 上海师范大学信息与机电工程学院 上海 200234
    上海师范大学智能教育大数据工程技术研究中心 上海 200234
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 杨晔(yangye0707@shnu.edu.cn)
  • 作者简介:(13465637718@163.com)
  • 基金资助:
    国家自然科学基金青年基金(51605298);国家留学基金委

Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion

WANG Fei, HUANG Tao, YANG Ye   

  1. School of Information and Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China
    Shanghai Intelligent Education Big Data Engineering Technology Research Center of Shanghai Normal University,Shanghai 200234,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:WANG Fei,born in 1997,postgraduate,is a member of China Computer Federation.His main research interests include machine learning and semiconductor device.
    YANG Ye,born in 1985,Ph.D,professor,is a member of China Computer Federation.Her main research interests include machine learning and microelectronics.
  • Supported by:
    Young Scientists Fund of National Natural Science Foundation of China(51605298) and China Scholarship Council.

摘要: 绝缘栅双极型晶体管(IGBT)器件是一种被广泛应用于工业、通信、计算机、汽车电子等领域的核心技术部件,提高该器件的使用安全性至关重要。近年来,采用机器学习对IGBT器件的寿命进行预测已成为热点的研究问题。然而,普通的神经网络预测仍存在着训练时间长和准确率较低的问题。针对该问题,提出了一种基于Stacking多模型融合的机器学习模型来实现对IGBT的寿命预测,该模型有效地提高了预测的准确率和效率。该算法包含双层结构,融合了4种互补的机器学习算法模型。其中,第一层使用了轻度梯度提升树模型(LGBM)、极端梯度提升树模型(XGBoost)和岭回归模型(Ridge)进行预测,再将预测结果输入第二层进行训练;第二层使用了线性回归模型,经过双层模型训练预测出最终的IGBT寿命。通过实验数据的对比证实,相比常用的长短期记忆神经网络(LSTM)算法模型,基于Stacking多模型融合的机器学习模型对IGBT寿命预测的均方误差平均降低了93%,且模型训练的平均耗时仅为LSTM网络算法模型的13%。

关键词: IGBT器件, Stacking算法, 长短期记忆网络, 机器学习, 寿命预测

Abstract: Insulated gate bipolar transistor(IGBT) device is a kind of core technology component which is widely used in industry,communication,computer,automotive electronics,and other fields.It is very important to improve the safety of the device.Recently,the prediction of the life of IGBT devices by machine learning has become a hot research issue.However,the common neural network prediction still has problems of long training time and low accuracy.In order to solve these problems,a machine learning model based on Stacking multi-model fusion is proposed to realize IGBT life prediction.The model effectively improves the accuracy and efficiency of prediction.The algorithm consists of a two-layer structure,which incorporates four complementary machine learning algorithm models.In the first layer,the mild gradient lift tree model(LGBM),extreme gradient lift tree model(XGBoost),and ridge regression model are used to predict the IGBT life,and then the prediction results are input into the second layer for training.The second layer uses a linear regression model and the final IGBT life is predicted by the two-layer model training.Through the comparison of experimental data,it is confirmed that the machine learning model based on Stacking multi-model fusion is superior to the commonly used long and short-term memory neural network(LSTM) algorithm model,its MSE of IGBT life prediction is 93% lower than that of the LSTM algorithm model.What's more,the average time of model training is reduced to 13% of the LSTM algorithm model.

Key words: IGBT device, Life prediction, Long short-term memory, Machine learning, Stacking algorithm

中图分类号: 

  • TP183
[1] BALIGA B J.IGBT devices-physics,design and applications[M].Beijing Machinery Industry Press,2018.
[2] CHEN B,LU G,FANG H Z,et al.IGBT health parameter prediction method based on degenerate data and DBN algorithm[J].Computer Measurement and Control,2017,25(5):71-75.
[3] SMET V,FOREST F,HUSELSTEIN J J,et al.Ageing andFailure Modes of IGBT Modules in High-Temperature Power Cycling[J].IEEE Transactions on Industrial Electronics,2011,58(10):4931-4941.
[4] ALGHASSI A,PERINPANAYAGAM S,SAMIE M.Stochastic RUL Calculation Enhanced With TDNN-Based IGBT Failure Modeling[J].IEEE Transactions on Reliability,2016,65(2):558-573.
[5] LI M,ZHU J J,LONG B.Particle Filter Approach for IGBT Remaining Useful Life[J].AMR,2014,981:86-89.
[6] WU H W,YE C J,ZHANG Y T,et al.Remaining Useful Life Prediction of an IGBT Module in Electric Vehicles Statistical Analysis[J].Symmetry,2020,12(8):1325.
[7] ADLA I,LOTFI S.A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network[J].Electronics,2020,9(10):1571.
[8] AHSAN M,HON T S,BATUNLU C,et al.Reliability Assessment of IGBT Through Modelling and Experimental Testing[J].IEEE Access,2020,8:39561-39573.
[9] LU G Z.Research on Life Prediction Technology of IGBTPower Module[D].Chongqing:Chongqing University,2012.
[10] DU X,LI G X,LIU H J,et al.The Influence of Wind Speed Probability Distribution on the Life of Power Devices in Wind Power Converters[J].Journal of Electrotechnical Technology,2015,30(15):109-117.
[11] THEBAUD J,WORIGARD E.Strategy for designing accele-rated aging tests to evaluate IGBT power modules lifetime in real operation mode[J].IEEE Transactions on Components and Packaging Technologies,2003,26(2):429-438.
[12] LIU B L,LIU D Z,TANG Y,et al.Life prediction and failureanalysis of IGBT module based on accelerated life test[J].Journal of Jiangsu University,2013,34(5):556-563.
[13] WANG X C,ZHAO J J.Research on IGBT lifetime based on wavelet neural network[J].Electrotechnical,2020(10):114-116.
[14] HAN G G.Research on IGBT fault prediction based on deep learning[D].Beijing:Beijing Jiaotong University,2019.
[15] SHI Y Z,GUO B,ZHENG Y J.Research on IGBT lifetime prediction based on LSTM network[J/OL].China Test.http://kns.cnki.net/kcms/detail/51.1714.TB.20200810.1312.006.html.
[16] LIU H,LANG B.Machine learning and deep learning methods for intrusion detection systems:A survey[J].Applied Sciences,2019,9(20):4396.
[17] YANG R X,SUN C Y,XU L.Prediction of photovoltaic power generation based on stacking model fusion[J].Computer System Application,2020,29(5):36-45.
[18] KE G L.Lightgbm:A highly efficient gradient boosting decision tree[J].Advances in Neural Information Processing Systems,2017,30:3146-3154.
[19] CHEN T,GUESTRIN C.XGBoost:A Scalable Tree Boosting System [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,California,USA,Association for Computing Machinery,2016:785-94.
[20] MARQUARDT D W,SNEE R D.Ridge Regression in Practice[J].The American Statistician,1975,29(1):3-20.
[21] HUANG H,MAWBY P A.A Lifetime Estimation Technique for Voltage Source Inverters[J].IEEE Transactions on Power Electronics,2013,28(8):4113-4119.
[22] CELAYA J,WYSOCKI P,GOBEL K.IGBT accelerated aging data set[J/OL].NASA Ames Prognostics Data Repository,2009.https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/#igbt.
[23] SONNENFELD G,KAI G,CELAYA J R,et al.An agile acce-lerated aging,characterization and scenario simulation system for gate controlled power transistors[J].IEEE Autotestcon,2008,6:208-215.
[1] 冷典典, 杜鹏, 陈建廷, 向阳.
面向自动化集装箱码头的AGV行驶时间估计
Automated Container Terminal Oriented Travel Time Estimation of AGV
计算机科学, 2022, 49(9): 208-214. https://doi.org/10.11896/jsjkx.210700028
[2] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[3] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[4] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[5] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[6] 张光华, 高天娇, 陈振国, 于乃文.
基于N-Gram静态分析技术的恶意软件分类研究
Study on Malware Classification Based on N-Gram Static Analysis Technology
计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203
[7] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[8] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[9] 康雁, 徐玉龙, 寇勇奇, 谢思宇, 杨学昆, 李浩.
基于Transformer和LSTM的药物相互作用预测
Drug-Drug Interaction Prediction Based on Transformer and LSTM
计算机科学, 2022, 49(6A): 17-21. https://doi.org/10.11896/jsjkx.210400150
[10] 李亚茹, 张宇来, 王佳晨.
面向超参数估计的贝叶斯优化方法综述
Survey on Bayesian Optimization Methods for Hyper-parameter Tuning
计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208
[11] 赵璐, 袁立明, 郝琨.
多示例学习算法综述
Review of Multi-instance Learning Algorithms
计算机科学, 2022, 49(6A): 93-99. https://doi.org/10.11896/jsjkx.210500047
[12] 肖治鸿, 韩晔彤, 邹永攀.
基于多源数据和逻辑推理的行为识别技术研究
Study on Activity Recognition Based on Multi-source Data and Logical Reasoning
计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270
[13] 姚烨, 朱怡安, 钱亮, 贾耀, 张黎翔, 刘瑞亮.
一种基于异质模型融合的 Android 终端恶意软件检测方法
Android Malware Detection Method Based on Heterogeneous Model Fusion
计算机科学, 2022, 49(6A): 508-515. https://doi.org/10.11896/jsjkx.210700103
[14] 许杰, 祝玉坤, 邢春晓.
机器学习在金融资产定价中的应用研究综述
Application of Machine Learning in Financial Asset Pricing:A Review
计算机科学, 2022, 49(6): 276-286. https://doi.org/10.11896/jsjkx.210900127
[15] 么晓明, 丁世昌, 赵涛, 黄宏, 罗家德, 傅晓明.
大数据驱动的社会经济地位分析研究综述
Big Data-driven Based Socioeconomic Status Analysis:A Survey
计算机科学, 2022, 49(4): 80-87. https://doi.org/10.11896/jsjkx.211100014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!