计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 196-203.doi: 10.11896/jsjkx.210500020

• 人工智能 • 上一篇    下一篇

基于改进势场法的机器人路径规划

王兵1, 吴洪亮1, 牛新征2   

  1. 1 西南石油大学计算机科学学院 成都610500
    2 电子科技大学计算机科学与工程学院 成都611731
  • 收稿日期:2021-05-06 修回日期:2021-08-06 出版日期:2022-07-15 发布日期:2022-07-12
  • 通讯作者: 王兵(w9521423@sina.com)
  • 基金资助:
    四川省科技计划资助项目(2020YFG0054)

Robot Path Planning Based on Improved Potential Field Method

WANG Bing1, WU Hong-liang1, NIU Xin-zheng2   

  1. 1 School of Computer Science,Southwest Petroleum University,Chengdu 610500,China
    2 School of Computer Science and Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
  • Received:2021-05-06 Revised:2021-08-06 Online:2022-07-15 Published:2022-07-12
  • About author:WANG Bing,born in 1977,associate professor,is a member of China Computer Federation.His main research interests include path planning and data mining.
  • Supported by:
    Science and Technology Planning Project of Sichuan Province(2020YFG0054).

摘要: 针对传统人工势场法存在引力过大、容易陷入局部极小值、目标不可达以及容易陷入陷阱区域等问题,提出了基于路径优化策略和参数优化的改进势场法。通过引力补偿增益系数来避免引力过大的问题;根据环境信息采取不同的虚拟目标点设置策略以逃离局部极小值点;设置观察距离以识别障碍物的分布情况,选择不同的路径优化策略来避免目标不可达问题,机器人通过提前旋转角度来切向远离陷阱区域或采用安全路径通过该区域;采用改进差分进化算法求解有约束最优化问题,使得人工势场法的初始化参数不再根据经验来设置。仿真实验结果表明,改进势场法可以有效解决机器人陷入局部极小值、目标不可达等问题,并可优化机器人的行驶路径,提高机器人移动的安全性。相比传统人工势场法,改进势场法的路径长度减少了17.5%。

关键词: 参数优化, 路径规划, 路径优化策略, 人工势场法, 虚拟目标点

Abstract: Aiming at the problems of excessive gravity,local minimum point,unreachable target,trapped areas in traditional artificial potential field(APF) method,an improved potential field method based on path optimization strategy and parameter optimization is proposed.Firstly,a gravitational compensation gain coefficient is used to avoid the problem of excessive gravity.Secondly,the virtual target point setting strategy is used to solve the problem of local minimum point according to environmental information.The observation distance is set to identify the distribution of obstacles and different path strategies are selected to avoid unreachable target.Moreover,robot rotates in advance to move tangentially away from this area or uses a safe path to pass through the area.Finally,the differential evolution algorithm is used to solve the constrained optimization problem,so that the initialization parameters of artificial potential field method are no longer set based on experience.Simulation experiments show that the improved potential field method can effectively solve problems such as local minimums and unreachable targets.Compared with the traditional artificial potential field,the path length of the improved algorithm reduces by 17.5%.

Key words: Artificial potential field, Parameter optimization, Path optimization strategy, Path planning, Virtual target point

中图分类号: 

  • TP242
[1]CHEN J F,HUANG W H,ZHANG Z,et al.Path planning algorithm based on improved artificial potential field method in dynamic environment[J].Modular Machine Tool & Automatic Manufacturing Technique,2020(12):6-9.
[2]WANG S M,ZHAO T T,LI W J.Mobile robot path planning based on improved artificial potential field method[C]//2018 IEEE International Conference of Intelligent Robotic and Control Engineering.Lanzhou:IEEE,2018:29-33.
[3]XU F.Research on robot obstacle avoidance and path planning based on improved artificial potential field method[J].Computer Science,2016,43(12):293-296.
[4]HUANG K Q,WANG S S,YE T,et al.Fuzzy improved artificial potential field method for robot local path planning[J].Modular Machine Tool & Automatic Manufacturing Technique,2019(8):63-66.
[5]SUN P Y,HUANG Y Y,PAN Y.Path planning of mobile robots based on improved potential field algorithm[J].Acta Armamentarii,2020,41(10):2106-2121.
[6]XU X Q,WANG M Y,MAO Y.Path planning of mobile robot based on improved artificial potential field method[J].Journal of Computer Applications,2020,40(12):3508-3512.
[7]QIU H T,PING X L,GAO W Y,et al.Mobile robot path planning based on improved artificial potential field method[J].Machine Design and Research,2017,33(4):36-40.
[8]CHEN Y,BAI G,ZHAN Y,et al.Path planning and obstacleavoiding of the USV based on improved ACO-APF hybrid algorithm with adaptive early-warning[J].IEEE Access,2021,9(1):40728-40742.
[9]CHENG Z,ZHANG Z A,LI J Z,et al.Mobile robots path planning based on improved artificial potential field[J].Computer Engineering and Applications,2019,55(23):29-34.
[10]SONG J H,DAI T,LIU Y J.Path planning of mobile robotsbased on improved artificial potential field method[J].Computer Engineering & Science,2017,39(7):1328-1332.
[11]LIANG X X,LIU C Y,SONG X L,et al.Research on improved artificial potential field approach in local path planning for mobile robot[J].Computer Simulation,2018,35(4):291-294.
[12]REN Y,ZHAO H B.Improved robotic path planning based on artificial potential field method[J].Computer Simulation,2020,37(2):360-364.
[13]WANG D,LI C H,GUO N,et al.Local path planning of mobile robot based on fuzzy potential field method[J].Computer Engineering and Applications,2021,57(6):212-218.
[14]HAN Z J,WU W J,LI X W,et al.An improved artificial potential field method constrained by a dynamic model[J].Journal of Shanghai University(Natural Science),2019,25(6):879-887.
[15]DUAN J M,CHEN Q L.Research on path planning algorithm based on improved artificial potential field-genetic algorithm[J].Foreign Electronic Measurement Technolog,2019,38(3):19-24.
[16]LUO Q,WANG H B,CUI X J,et al.Autonomous mobile robot path planning based on improved artificial potential method[J].Control Engineering of China,2019,26(6):1091-1098.
[17]HAN W,SUN K B.Research on dynamic path planning of fuzzy artificial potential field method[J].Computer Engineering and Applications,2018,54(6):105-109.
[18]YAO Q F,ZHENG Z Y,QI L,et al,Path planning method with improved artificial potential field-a reinforcement learning perspective[J].IEEE Access,2020,8(1):135513-135523.
[19]KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[J].The International Journal of Robotics Research,1986,5(1):90-98.
[20]STORN R,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(3):341-359.
[21]HOU G,HE L,HANG Z C,et al.Pyramid evolution strategy based on differential evolution for solving one-dimensional cutting stock problem[J].Computer Science,2021,57(7):78-87.
[22]KANG F,WANG Y N.Robot path planning based on Hybrid artificial potential field/genetic algorithm[J].Journal of System Simulation,2006(3):774-777.
[23]LI Q,WANG L J,CHEN B,et al.An improved artificial potential field method with parameters optimization based on genetic algorithms[J].Journal of University of Science and Technology Beijing,2012,34(2):202-206.
[24]XIANG L,LU H Y,HU S J,et al.Improved SSO algorithm based on differential evolution[J].Transducer and Microsystem Technologies,2021,40(6):121-125,132.
[25]WANG X,MAO Y C,XIE Z P,et al.Inference task offloading strategy based on differential evolution[J].Computer Science,2020,47(10):256-262.
[26]XIAO P,ZOU D X,XIA Z L,et al.Application of improved differential evolution algorithm to dynamic economic dispatch[J].Control Engineering of China,2021,28(2):275-283.
[1] 谭任深, 徐龙博, 周冰, 荆朝霞, 黄向生.
海上风电场通用运维路径规划模型优化及仿真
Optimization and Simulation of General Operation and Maintenance Path Planning Model for Offshore Wind Farms
计算机科学, 2022, 49(6A): 795-801. https://doi.org/10.11896/jsjkx.210400300
[2] 杨浩雄, 高晶, 邵恩露.
考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题
Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery
计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005
[3] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[4] 陈镜宇, 郭志军, 尹亚昆.
基于混合算法的智能割草机全遍历路径规划及其系统设计
Full Traversal Path Planning and System Design of Intelligent Lawn Mower Based on Hybrid Algorithm
计算机科学, 2021, 48(6A): 633-637. https://doi.org/10.11896/jsjkx.201100002
[5] 周益旻, 刘方正, 王勇.
基于混合方法的IPSec VPN加密流量识别
IPSec VPN Encrypted Traffic Identification Based on Hybrid Method
计算机科学, 2021, 48(4): 295-302. https://doi.org/10.11896/jsjkx.200700189
[6] 邓丽, 武金达, 李科学, 卢亚康.
基于TPE的SpaRC算法超参数优化方法
SpaRC Algorithm Hyperparameter Optimization Methodology Based on TPE
计算机科学, 2021, 48(2): 70-75. https://doi.org/10.11896/jsjkx.200500156
[7] 杜婉茹, 王潇茵, 田涛, 张越.
面向未知环境及动态障碍的人工势场路径规划算法
Artificial Potential Field Path Planning Algorithm for Unknown Environment and Dynamic Obstacles
计算机科学, 2021, 48(2): 250-256. https://doi.org/10.11896/jsjkx.191100170
[8] 郭启程, 杜晓玉, 张延宇, 周毅.
基于改进鲸鱼算法的无人机三维路径规划
Three-dimensional Path Planning of UAV Based on Improved Whale Optimization Algorithm
计算机科学, 2021, 48(12): 304-311. https://doi.org/10.11896/jsjkx.201000021
[9] 赵杨, 倪志伟, 朱旭辉, 刘浩, 冉家敏.
基于改进狮群进化算法的面向空间众包平台的多工作者多任务路径规划方法
Multi-worker and Multi-task Path Planning Based on Improved Lion Evolutionary Algorithm forSpatial Crowdsourcing Platform
计算机科学, 2021, 48(11A): 30-38. https://doi.org/10.11896/jsjkx.201200085
[10] 曹波, 陈锋, 成静, 李华, 李永乐.
基于全向路口模型的非结构化道路重复节点路径规划
Route Planning of Unstructured Road Including Repeat Node Based on Bidirectional Search
计算机科学, 2021, 48(11A): 77-80. https://doi.org/10.11896/jsjkx.201200193
[11] 陈继清, 谭成志, 莫荣现, 王志奎, 吴家华, 赵超阳.
基于人工势场的A*算法的移动机器人路径规划
Path Planning of Mobile Robot with A* Algorithm Based on Artificial Potential Field
计算机科学, 2021, 48(11): 327-333. https://doi.org/10.11896/jsjkx.200900170
[12] 赵晓薇, 朱小军, 韩周卿.
面向定位应用的无人机的悬停位置和飞行路径优化
Hover Location Selection and Flight Path Optimization for UAV for Localization Applications
计算机科学, 2021, 48(11): 345-355. https://doi.org/10.11896/jsjkx.201000105
[13] 王梓强, 胡晓光, 李晓筱, 杜卓群.
移动机器人全局路径规划算法综述
Overview of Global Path Planning Algorithms for Mobile Robots
计算机科学, 2021, 48(10): 19-29. https://doi.org/10.11896/jsjkx.200700114
[14] 杨德成, 李凤岐, 王祎, 王胜法, 殷慧殊.
智能3D打印路径规划算法
Intelligent 3D Printing Path Planning Algorithm
计算机科学, 2020, 47(8): 267-271. https://doi.org/10.11896/jsjkx.190700184
[15] 姜辰凯, 李智, 盘书宝, 王勇军.
基于改进Dijkstra算法的AGVs无碰撞路径规划
Collision-free Path Planning of AGVs Based on Improved Dijkstra Algorithm
计算机科学, 2020, 47(8): 272-277. https://doi.org/10.11896/jsjkx.190700138
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!