计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 370-377.doi: 10.11896/jsjkx.210500023
张嘉淏1, 刘峰2,3,4, 齐佳音4
ZHANG Jia-hao1, LIU Feng2,3,4, QI Jia-yin4
摘要: 微表情是一种能够体现人真实情感的自发面部动作,其持续时间较短,动作幅度轻微,识别难度较大,但是有重要的研究价值。为解决微表情情感识别问题,提出了一种新型的轻量级微表情识别网络mini-AORCNN。该神经网络以顶点-起始点光流特征为输入,结合残差卷积神经网络与视觉Transformer的相关架构,可以有效完成微表情识别任务。这一网络包含一种参数量更小的新型残差模块,并用自注意力算子替换了最后一个残差块中的卷积算子,从而实现了Bottleneck Transformer架构。这一新型微表情识别网络在中科院CASME系列数据集上经过“留一被试交叉验证”(LOSO)的检验,确定其在情感分类任务上取得了73.09%的平均召回率(UAR)以及72.25%的平均F1-Score(UF1),上述准确率评价指标与极低的参数量(39 185)在与微表情领域的多种主流模型的比较中体现出了明显的优势。文中还包含了一组消融实验,确保了光学应变强度、自注意力机制和相对位置编码等设计的优越性。
中图分类号:
[1] EKMAN P,FRIESEN W V.Nonverbal leakage and clues to deception[J].Psychiatry,1969,32(1):88-106. [2] O'SULLIVAN M,FRANK M G,HURLEY C M,et al.Policelie detection accuracy:The effect of lie scenario[J].Law and Human Behavior,2009,33(6):530. [3] SEIDENSTAT P,SPLANE F X.Protecting airline passengers in the age of terrorism[M].ABC-CLIO,2009. [4] YAN W J,WANG S J,LIU Y J,et al.For micro-expression re-cognition:Database and suggestions[J].Neurocomputing,2014,136:82-87. [5] ZHANG M,FU Q,CHEN Y H,et al.Emotional context influences micro-expression recognition[J].PloS One,2014,9(4):e95018. [6] LIONG S T,SEE J,WONG K S,et al.Less is more:Micro-expression recognition from video using apex frame[J].Signal Processing:Image Communication,2018,62:82-92. [7] MERGHANI W,DAVISON A K,YAP M H.A review on facial micro-expressions analysis:datasets,features and metrics[J].arXiv:1805.02397,2018. [8] POLIKOVSKY S,KAMEDA Y,OHTA Y.Facial micro-expressions recognition using high speed camera and 3D-gradient descriptor[C]//3rd International Conference on Imaging for Crime Detection and Prevention(ICDP 2009).IET,2009:1-6. [9] ESSA I A,PENTLAND A P.Coding,analysis,interpretation,and recognition of facial expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):757-763. [10] YAP M H,SEE J,HONG X,et al.Facial micro-expressionsgrand challenge 2018 summary[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018).IEEE,2018:675-678. [11] SEE J,YAP M H,LI J,et al.Megc 2019-the second facial micro-expressions grand challenge[C]//2019 14th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2019).IEEE,2019:1-5. [12] LI J,WANG S J,YAP M H,et al.MEGC2020-The Third Facial Micro-Expression Grand Challenge[C]//2020 15th IEEE International Conference on Automatic Face and Gesture Recognition(FG 2020)(FG).IEEE Computer Society,2020:234-237. [13] HUANG X,ZHAO G,HONG X,et al.Spontaneous facial micro-expression analysis using spatiotemporal completed local quantized patterns[J].Neurocomputing,2016,175:564-578. [14] LO L,XIE H X,SHUAI H H,et al.MER-GCN:Micro-Expression Recognition Based on Relation Modeling with Graph Con-volutional Networks[C]//2020 IEEE Conference on Multimedia Information Processing and Retrieval(MIPR).IEEE,2020:79-84. [15] YAN W J,WU Q,LIU Y J,et al.CASME database:a dataset of spontaneous micro-expressions collected from neutralized faces[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition(FG).IEEE,2013:1-7. [16] YAN W J,LI X,WANG S J,et al.CASME II:An improvedspontaneous micro-expression database and the baseline evaluation[J].PloS One,2014,9(1). [17] QU F,WANG S J,YAN W J,et al.CAS(ME):A Database for Spontaneous Macro-Expression and Micro-Expression Spotting and Recognition[J].IEEE Transactions on Affective Computing,2017,9(4):424-436. [18] DAVISON A K,LANSLEY C,COSTEN N,et al.Samm:Aspontaneous micro-facial movement dataset[J].IEEE Transactions on Affective Computing,2016,9(1):116-129. [19] LI X,PFISTER T,HUANG X,et al.A spontaneous micro-expression database:Inducement,collection and baseline[C]//2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition(FG).IEEE,2013:1-6. [20] COOTES T F,TAYLOR C J,COOPER D H,et al.Active shape models-their training and application[J].Computer Vision and Image Understanding,1995,61(1):38-59. [21] KASINSKI A,SCHMIDT A.The architecture and performance of the face and eyes detection system based on the Haar cascade classifiers[J].Pattern Analysis and Applications,2010,13(2):197-211. [22] PENG M,WU Z,ZHANG Z,et al.From macro to micro expression recognition:Deep learning on small datasets using transfer learning[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018).IEEE,2018:657-661. [23] MERGHANI W,DAVISON A,YAP M.Facial Micro-expres-sions Grand Challenge 2018:evaluating spatio-temporal features for classification of objective classes[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018).IEEE,2018:662-666. [24] KHOR H Q,SEE J,PHAN R C W,et al.Enriched long-term recurrent convolutional network for facial micro-expression recognition[C]//2018 13th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2018).IEEE,2018:667-674. [25] LIU Y,DU H,ZHENG L,et al.A neural micro-expressionrecognizer[C]//2019 14th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2019).IEEE,2019:1-4. [26] GAN Y S,LIONG S T,YAU W C,et al.Off-apexnet on micro-expression recognition system[J].Signal Processing:Image Communication,2019,74:129-139. [27] ZHOU L,MAO Q,XUE L.Dual-inception network for cross-database micro-expression recognition[C]//2019 14th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2019).IEEE,2019:1-5. [28] LIONG S T,GAN Y S,SEE J,et al.Shallow triple stream three-dimensional cnn(ststnet) for micro-expression recognition[C]//2019 14th IEEE International Conference on Automatic Face & Gesture Recognition(FG 2019).IEEE,2019:1-5. [29] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [30] WANG C,PENG M,BI T,et al.Micro-attention for micro-expression recognition[J].Neurocomputing,2020,410:354-362. [31] VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [32] DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [33] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [34] CHEN M,RADFORD A,CHILD R,et al.Generative pretrai-ning from pixels[C]//International Conference on Machine Learning.PMLR,2020:1691-1703. [35] SRINIVAS A,LIN T Y,PARMAR N,et al.Bottleneck transformers for visual recognition[J].arXiv:2101.11605,2021. [36] LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[J].arXiv:2103.14030,2021. [37] Electronic spatial sensing for the blind:contributions from perception,rehabilitation,and computer vision[M].Berlin:Springer,Springer Science & Business Media,2013. [38] PÉREZ J S,MEINHARDT-LLOPIS E,FACCIOLO G.TV-L1 optical flow estimation[J].Image Processing on Line,2013,2013:137-150. |
[1] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[2] | 赵丹丹, 黄德根, 孟佳娜, 董宇, 张攀. 基于BERT-GRU-ATT模型的中文实体关系分类 Chinese Entity Relations Classification Based on BERT-GRU-ATT 计算机科学, 2022, 49(6): 319-325. https://doi.org/10.11896/jsjkx.210600123 |
[3] | 李星燃, 张立言, 姚树婧. 结合特征融合和注意力机制的微表情识别方法 Micro-expression Recognition Method Combining Feature Fusion and Attention Mechanism 计算机科学, 2022, 49(2): 4-11. https://doi.org/10.11896/jsjkx.210900028 |
[4] | 胡艳丽, 童谭骞, 张啸宇, 彭娟. 融入自注意力机制的深度学习情感分析方法 Self-attention-based BGRU and CNN for Sentiment Analysis 计算机科学, 2022, 49(1): 252-258. https://doi.org/10.11896/jsjkx.210600063 |
[5] | 徐少伟, 秦品乐, 曾建朝, 赵致楷, 高媛, 王丽芳. 基于多级特征和全局上下文的纵膈淋巴结分割算法 Mediastinal Lymph Node Segmentation Algorithm Based on Multi-level Features and Global Context 计算机科学, 2021, 48(6A): 95-100. https://doi.org/10.11896/jsjkx.200700067 |
[6] | 王习, 张凯, 李军辉, 孔芳, 张熠天. 联合自注意力和循环网络的图像标题生成 Generation of Image Caption of Joint Self-attention and Recurrent Neural Network 计算机科学, 2021, 48(4): 157-163. https://doi.org/10.11896/jsjkx.200300146 |
[7] | 周小诗, 张梓葳, 文娟. 基于神经网络机器翻译的自然语言信息隐藏 Natural Language Steganography Based on Neural Machine Translation 计算机科学, 2021, 48(11A): 557-564. https://doi.org/10.11896/jsjkx.210100015 |
[8] | 梁正友, 何景琳, 孙宇. 一种用于微表情自动识别的三维卷积神经网络进化方法 Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition 计算机科学, 2020, 47(8): 227-232. https://doi.org/10.11896/jsjkx.190700009 |
[9] | 张鹏飞, 李冠宇, 贾彩燕. 面向自然语言推理的基于截断高斯距离的自注意力机制 Truncated Gaussian Distance-based Self-attention Mechanism for Natural Language Inference 计算机科学, 2020, 47(4): 178-183. https://doi.org/10.11896/jsjkx.190600149 |
[10] | 康雁,崔国荣,李浩,杨其越,李晋源,王沛尧. 融合自注意力机制和多路金字塔卷积的软件需求聚类算法 Software Requirements Clustering Algorithm Based on Self-attention Mechanism and Multi- channel Pyramid Convolution 计算机科学, 2020, 47(3): 48-53. https://doi.org/10.11896/jsjkx.190700146 |
[11] | 张义杰, 李培峰, 朱巧明. 基于自注意力机制的事件时序关系分类方法 Event Temporal Relation Classification Method Based on Self-attention Mechanism 计算机科学, 2019, 46(8): 244-248. https://doi.org/10.11896/j.issn.1002-137X.2019.08.040 |
[12] | 凡子威, 张民, 李正华. 基于BiLSTM并结合自注意力机制和句法信息的隐式篇章关系分类 BiLSTM-based Implicit Discourse Relation Classification Combining Self-attention Mechanism and Syntactic Information 计算机科学, 2019, 46(5): 214-220. https://doi.org/10.11896/j.issn.1002-137X.2019.05.033 |
|