计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 227-232.doi: 10.11896/jsjkx.190700009
梁正友, 何景琳, 孙宇
LIANG Zheng-you, HE Jing-lin, SUN Yu
摘要: 由于微表情持续时间短、动作幅度小, 因此微表情自动识别一直是一个具有挑战性的问题。针对上述问题, 提出一种用于微表情识别的三维卷积神经网络进化(Three-Dimensional Convolutional Neural Network Evolution, C3DEvol)方法。该方法使用能有效提取动态信息的三维卷积神经网络(Three-Dimensional Convolutional Neural Network, C3D)来提取微表情在时域和空域上的特征;同时使用具有全局搜索和优化能力的遗传算法对C3D的网络结构进行优化, 以获取最优的C3D网络结构和避免局部优化。利用CASME2数据集在带有两块NVIDIA Titan X GPU的工作站上开展了实验, 结果表明C3DEvol微表情自动识别的准确率达到63.71%, 优于现有的微表情自动识别方法。
中图分类号:
[1]CORNEANU C, OLIU M, COHN J F, et al.Survey on RGB, 3D, Thermal, and Multimodal Approaches for Facial Expression Recognition:History, Trends, and Affect-related Applications[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016, 38(8):1548-1568. [2]RUSSELL T A, CHU E, PHILLIPS M L.A pilot study to in-vestigate the effectiveness of emotion recognition remediation in schizophrenia using the micro-expression training tool[J].British Journal of Clinical Psychology, 2006, 45(4):579-583. [3]PFISTER T, LI X, ZHAO G, et al.Recognising spontaneous facial micro-expressions[C]∥2011 IEEE International Conference on Computer Vision (ICCV).IEEE, 2011:1449-1456. [4]WANG Y, SEE J, PHAN R C W, et al.Lbp with sixintersection points:Reducing redundant information in lbp-top for micro-expression recognition[C]∥Asian Conference on Computer Vision.Cham:Springer, 2014:525-537. [5]WANG Y, SEE J, PHAN C W, et al.Efficient Spatio-Temporal Local Binary Patterns for Spontaneous Facial Micro-Expression Recognition[J].Plos One, 2015, 10(5):1-20. [6]HUANG X, ZHAO G, HONG X, et al.Spontaneous facial mi-cro-expression analysis using spatiotemporal completed local quantized patterns[J].Neurocomputing, 2016, 175:564-578. [7]LIU Y J, ZHANG J K, YAN W J, et al.A main directional mean optical flow feature for spontaneous micro-expression recognition[J].IEEE Transactions on Affective Computing, 2016, 7(4):299-310. [8]HUANG W, FAN L, HARANDI M, et al.Toward Efficient Action Recognition:Principal Backpropagation for Training Two-Stream Networks[J].IEEE Transactions on Image Processing, 2019, 28(4):1773-1782. [9]YOUNG T, HAZARIKA D, PORIA S, et al.Recent trends indeep learning based natural language processing[J].IEEE Computational Intelligence Magazine, 2018, 13(3):55-75. [10]XIONG W, WU L, ALLEVA F, et al.The Microsoft 2017 conversational speech recognition system[C]∥2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).IEEE, 2018:5934-5938. [11]TRAN D, BOURDEV L, FERGUS R, et al.Learning spatiotemporal features with 3d convolutional networks[C]∥Proceedings of the IEEE International Conference on Computer Vision.2015:4489-4497. [12]KIM D H, BADDAR W J, JANG J, et al.Multi-objective based spatio-temporal feature representation learning robust to expression intensity variations for facial expression recognition[J].IEEE Transactions on Affective Computing, 2017, 10(2):223-236. [13]PENG M, WANG C, CHEN T, et al.Dual temporal scale convolutional neural network for micro-expression recognition[J].Frontiers in Psychology, 2017, 8:1-12. [14]PETKE J, HARALDSSON S O, HARMAN M, et al.Genetic Improvement of Software:A Comprehensive Survey[J].IEEE Transactions on Evolutionary Computation, 2018, 22(3):415-432. [15]KIM Y H, YOON Y, GEEM Z W.A comparison study of harmony search and genetic algorithm for the max-cut problem[J].Swarm and Evolutionary Computation, 2019, 44:130-135. [16]METEVIER B, SAINI A K, SPECTOR L.Lexicase SelectionBeyond Genetic Programming[M]∥Genetic Programming Theo-ry and Practice XVI.Cham:Springer, 2019:123-136. [17]NGUYEN S, ZHANG M, JOHNSTON M, et al.Genetic Programming for Job Shop Scheduling[M]∥Evolutionary and Swarm Intelligence Algorithms.Cham:Springer, 2019:143-167. [18]SHANMUGAPRIYA K, MALAR R M S M.An EffectiveTechnique to Track Objects with the Aid of Rough Set Theory and Evolutionary Programming[J].Journal of Intelligent Systems, 2019, 28(1):1-13. [19]CHEN Z, XIA J, BAI J, et al.Feature extraction algorithm based on evolutionary deep learning[J].Computer Science, 2015, 42(11):288-292. [20]IJJINA E P, CHALAVADI K M.Human action recognitionusing genetic algorithms and convolutional neural networks[J].Pattern Recognition, 2016, 59:199-212. [21]OULLETTE R, BROWNE M, HIRASAWA K.Genetic algo-rithm optimization of a convolutional neural network for autonomous crack detection[C]∥Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat.No.04TH8753).IEEE, 2004:516-521. [22]RIKHTEGAR A, POOYAN M, MANZURI-SHALMANI M T.Genetic algorithm-optimised structure of convolutional neural network for face recognition applications[J].IET Computer Vision, 2016, 10(6):559-566. [23]JI S, XU W, YANG M, et al.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231. [24]YAN W J, WU Q, LIU Y J, et al.CASME database:a dataset of spontaneous micro-expressions collected from neutralized faces[C]∥2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).IEEE, 2013:1-7. [25]YAN W J, LI X, WANG S J, et al.CASME II:An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation[J].Plos One, 2014, 9(1):1-8. [26]LI X, PFISTER T, HUANG X, et al.A spontaneous micro-expression database:Inducement, collection and baseline[C]∥2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).IEEE, 2013:1-6. [27]VIODA P.Rapid object detection using a boosted cascade ofsimple features[C]∥Proc.IEEE CVPR 2001.2001:905-910. [28]ZHOU Z, ZHAO G, PIETIKINEN M.Towards a practical lipreading system[C]∥2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2011:137-144. [29]LIONG S T, SEE J, WONG K S, et al.Less is more:Micro-expression recognition from video using apex frame[J].Signal Processing:Image Communication, 2018, 62:82-92. [30]XU F, ZHANG J, WANG J Z.Micro-expression identificationand categorization using a facial dynamics map[J].IEEE Tran-sactions on Affective Computing, 2017, 8(2):254-267. [31]HE J, HU J F, LU X, et al.Multi-task mid-level feature learning for micro-expression recognition[J].Pattern Recognition, 2017, 66:44-52. [32]PATEL D, HONG X, ZHAO G.Selective deep features for micro-expression recognition[C]∥2016 23rd International Confe-rence on Pattern Recognition (ICPR).IEEE, 2016:2258-2263. |
[1] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[2] | 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨. 基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨 Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism 计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224 |
[3] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[4] | 刘伟业, 鲁慧民, 李玉鹏, 马宁. 指静脉识别技术研究综述 Survey on Finger Vein Recognition Research 计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056 |
[5] | 杨浩雄, 高晶, 邵恩露. 考虑一单多品的外卖订单配送时间的带时间窗的车辆路径问题 Vehicle Routing Problem with Time Window of Takeaway Food ConsideringOne-order-multi-product Order Delivery 计算机科学, 2022, 49(6A): 191-198. https://doi.org/10.11896/jsjkx.210400005 |
[6] | 张嘉淏, 刘峰, 齐佳音. 一种基于Bottleneck Transformer的轻量级微表情识别架构 Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer 计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023 |
[7] | 高元浩, 罗晓清, 张战成. 基于特征分离的红外与可见光图像融合算法 Infrared and Visible Image Fusion Based on Feature Separation 计算机科学, 2022, 49(5): 58-63. https://doi.org/10.11896/jsjkx.210200148 |
[8] | 左杰格, 柳晓鸣, 蔡兵. 基于图像分块与特征融合的户外图像天气识别 Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion 计算机科学, 2022, 49(3): 197-203. https://doi.org/10.11896/jsjkx.201200263 |
[9] | 李星燃, 张立言, 姚树婧. 结合特征融合和注意力机制的微表情识别方法 Micro-expression Recognition Method Combining Feature Fusion and Attention Mechanism 计算机科学, 2022, 49(2): 4-11. https://doi.org/10.11896/jsjkx.210900028 |
[10] | 沈彪, 沈立炜, 李弋. 空间众包任务的路径动态调度方法 Dynamic Task Scheduling Method for Space Crowdsourcing 计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249 |
[11] | 任首朋, 李劲, 王静茹, 岳昆. 基于集成回归决策树的lncRNA-疾病关联预测方法 Ensemble Regression Decision Trees-based lncRNA-disease Association Prediction 计算机科学, 2022, 49(2): 265-271. https://doi.org/10.11896/jsjkx.201100132 |
[12] | 张师鹏, 李永忠. 基于降噪自编码器和三支决策的入侵检测方法 Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions 计算机科学, 2021, 48(9): 345-351. https://doi.org/10.11896/jsjkx.200500059 |
[13] | 冯霞, 胡志毅, 刘才华. 跨模态检索研究进展综述 Survey of Research Progress on Cross-modal Retrieval 计算机科学, 2021, 48(8): 13-23. https://doi.org/10.11896/jsjkx.200800165 |
[14] | 张丽倩, 李孟航, 高珊珊, 张彩明. 面向计算机辅助舌诊关键问题的解决方案综述 Summary of Computer-assisted Tongue Diagnosis Solutions for Key Problems 计算机科学, 2021, 48(7): 256-269. https://doi.org/10.11896/jsjkx.200800223 |
[15] | 吴善杰, 王新. 基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法 Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks 计算机科学, 2021, 48(7): 308-315. https://doi.org/10.11896/jsjkx.200800110 |
|