计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 116-122.doi: 10.11896/jsjkx.210700095

• 计算机视觉:理论与应用 • 上一篇    下一篇

自然场景下遥感图像超分辨率重建算法研究

陈贵强, 何军   

  1. 四川大学计算机学院 成都610065
  • 收稿日期:2021-07-09 修回日期:2021-10-15 出版日期:2022-02-15 发布日期:2022-02-23
  • 通讯作者: 何军(hejun@scu.edu.cn)
  • 作者简介:605482808@qq.com
  • 基金资助:
    国家自然科学基金(U1836103);四川省科技重点研发项目(18ZDYF2039)

Study on Super-resolution Reconstruction Algorithm of Remote Sensing Images in Natural Scene

CHEN Gui-qiang, HE Jun   

  1. College of Computer Science,Sichuan University,Chengdu 610065,China
  • Received:2021-07-09 Revised:2021-10-15 Online:2022-02-15 Published:2022-02-23
  • About author:CHEN Gui-qiang,born in 1990,postgraduate,is a member of China Computer Federation.His main research interests include deep learning and computer vision.
    HE Jun,born in 1970,Ph.D,vice professor,postgraduate supervisor.His main research interests include computer network and intelligent control system.
  • Supported by:
    National Nature Science Foundation of China(U1836103) and Key Research and Development Projects of Science and Technology of Sichuan Province(18ZDYF2039).

摘要: 在遥感图像超分辨率重建领域,大部分数据集缺少成对的图像用于训练,当前的方法主要是通过双三次插值的方式来获取低分辨率图像,因退化模型过于理想化导致在处理真实低分辨率遥感图像时效果较差,基于此,文中提出了一种自然场景下真实遥感图像的超分辨率重建算法。针对缺少成对图像的数据集的问题,构建了一种更合理的退化模型,将成像过程中的退化先验知识(如模糊、噪声、降采样等)随机混洗,以模拟自然场景下低分辨遥感图像的生成过程,生成逼真的低分辨率图像用于训练;同时,改进了一种基于生成对抗网络的超分辨率重建算法,在生成网络中引入注意力机制,以增强遥感图像纹理细节。在UC Merced数据集上,所提方法的PSNR/SSIM较ESRGAN和RCAN分别提升了1.407 1 dB/0.067 2,0.821 1 dB/0.023 5;在真实遥感数据集Alsat2B上,所提方法在3种地形上的平均PSNR/SSIM较基线模型提升了1.758 4 dB/0.048 5,重建图像视觉效果也优于基线模型,从而验证了退化模型和重建模型的有效性。

关键词: 超分辨率重建, 生成对抗网络, 退化模型, 遥感图像, 注意力机制

Abstract: Due to the lack of paired datasets in the field of remote sensing image super-resolution reconstruction,current methods obtain low resolution images by bicubic interpolation,in which the degradation model is too idealized,resulting in unsatisfied reconstruction results in real low resolution remote sensing images situations.This paper proposes a super resolution reconstruction algorithm for real remote sensing images.For datasets that lack paired images,this paper builds a more reasonable degradation model,in which a prior of degradation in the imaging process (like blur,noise,down sampling,etc.) is randomly shuffled to generate realistic low-resolution images for training,simulating the generation process of low-resolution remote sensing images.Also,this paper improves a reconstruction algorithm based on generative adversarial networks(GAN) to enhance texture details by introducing attention mechanism.Experiments on UC Merced dataset show a promotion of 1.407 1 dB/0.067 2,0.821 1 dB/0.023 5 compared with ESRGAN and RCAN on the evaluation index of PSNR/SSIM,experiments on Alsat2B dataset promote 1.758 4 dB/0.048 5 compared with the baseline,which show the effective of the degradation model and reconstruction architecture.

Key words: Attention mechanism, Degradation, Generative adversarial network, Remote sensing, Super-resolution reconstruction

中图分类号: 

  • TP399
[1]DONG C,CHEN C L,HE K M,et al.Learning a deep convolu-tional network for image super-resolution[C]//Proceedings of 13th European Conference on Computer Vision.Springer,2014:184-199.
[2]KIM J W,LEE J K,LEE K M.Deeply-recursive convolutionalnetwork for image super-resolution[C]//29th IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:1637-1645.
[3]KIM J W,LEE J K,LEE K M.Accurate Image Super-Resolution Using Very Deep Convolutional Networks [C]//29th IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:1646-1654.
[4]LEDIG C,THEIS L,HUSZAR F,et al.Photo-realistic singleimage super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:105-114.
[5]ZHANG Z Z,GAO K,LI W,et al.A Survey on the Optical Remote Sensing Image Super-resolution Technology[J].Space Recovery & Remote Sensing,2020,41(6):21-33.
[6]SU J M,YANG L X.Super Resolution of Single Frame Remote Sensing Image Based on Generative Adversarial Nets [J].Computer Engineering and Applications,2019,55(12):202-207,214.
[7]JIANG K,WANG Z Y,YI P,et al.GAN-based multi-level mapping network for satellite imagery super-resolution[C]//International Conference on Multimedia and Expo.IEEE,2019.
[8]RENG H F,ZHU H Q,TANG Y,et al.Multi-level FeatureSparse Representation Based Remote Sensing Image Classification[J].Journal of Chongqing University of Technology(Natural Science),2021,35(7):131-138.
[9]WANG Y,LI A,WANG S Q.Research on the Influence ofTraining Set on Automatic Target Recognition Under Super-Resolution of Remote Sensing Images[J].Journal of Chongqing University of Technology(Natural Science),2021,35(2):136-143.
[10]YANG Y,NEWSAM S D.Bag-of-visual-words and spatial extensions for land-use classification[C]//18th SIGSPATIAL International Conference Advance Geographic Information System.2010:270-279.
[11]ACHRAF D,KHELIFA D,MOUSSA S K,et al.A new public Alsat-2B dataset for single-image super-resolution[EB/OL].(2021-03-21)[2021-07-06].https://arxiv.org/abs/2103.12547.
[12]CAI J R,ZENG H,YONG H W,et al.Toward Real-World Single Image Super-Resolution:A New Benchmark and A New Model[C]//International Conference on Computer Vision.IEEE,2019:3086-3095.
[13]WEI P X,XIE Z W,LU H N,et al.Component Divide-and-Con-quer for Real-World Image Super-Resolution [C]//European Conference on Computer Vision.Springer,2020:101-117.
[14]YUAN Y,LIU S Y,ZHANG J W,et al.Unsupervised ImageSuper-Resolution Using Cycle-in-Cycle Generative Adversarial Networks[C]//Computer Society Conference on Computer Vision and Pattern Recognition Workshops.IEEE,2018:814-823.
[15]MANUEL F,GU S H,RADU T,et al.Frequency Separation forReal-World Super-Resolution[C]//Proceedings of the IEEE International Conference on Computer Vision.IEEE,2019:3599-3608.
[16]SEFI B K,ASSAF S,MICHAL I.Blind super-resolution kernelestimation using an internal-gan[C]//Advances in Neural Information Processing Systems.2019:284-293.
[17]JI X Z,CAO Y,TAI Y,et al.Real-World Super-Resolution via Kernel Estimation and Noise Injection [C]//Conference on Computer Vision and Pattern Recognition Workshops.IEEE,2020:1914-1923.
[18]ZHANG K,ZUO W M,ZHANG L.Learning a Single Convolutional Super-Resolution Network for Multiple Degradations[C]//Conference on Computer Vision and Pattern Recognition.IEEE,2018:3262-3271.
[19]GU J J,LU H N,ZUO W M,et al.Blind Super-Resolution With Iterative Kernel Correction[C]//Conference on Computer Vision and Pattern Recognition Workshops.IEEE,2019.
[20]ZHANG N,WANG Y C,ZHANG X,et al.A Multi-Degradation Aided Method for Unsupervised Remote Sensing Image Super Resolution With Convolution Neural Networks[J].IEEE Tran-sactions on Geoscience and Remote Sensing,2020.
[21]ZHU X,TALEBI H,SHI X W,et al.Super-resolution commercial satellite imagery using realistic training data[C]//International Conference on Image Processing.IEEE,2020:498-502.
[22]ZHANG K,LIANG J Y,GOOL L V,et al.Designing a Practical Degradation Model for Deep Blind Image Super-Resolution[EB/OL].(2021-03-25)[2021-07-06].https://arxiv.org/abs/2103.14006.
[23]TANG L,LIU L,SU J H.Modeling and Simulation Research of Infrared Image Noise[J].Infrared Technology,2014,36(7):542-548.
[24]GAO G,ZHANG J,LV X M,et al.Analysis of MultiplicativeNosie Models in SAR Imagery[J].Signal Precessing,2008,24(2):161-167.
[25]WANG X T,YU K,WU S X,et al.ESRGAN:Enhanced Super-Resolution Generative Adversarial Networks[C]//15th European Conference on Computer Vision.Verlag:Springer,2019:63-79.
[26]ZHANG Y L,LI K P,LI K,et al.Image Super-Resolution Using Very Deep Residual Channel Attention Networks[C]//the European Conference on Computer Vision.2018:286-301.
[27]LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:136-144.
[28]LIU J,TANG J,WU G S.Residual feature distillation network for lightweight image super resolution[EB/OL].(2020-09-24)[2021-07-06].https://arxiv.org/abs/2009.11551.
[1] 张佳, 董守斌.
基于评论方面级用户偏好迁移的跨领域推荐算法
Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer
计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[7] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[8] 王坤姝, 张泽辉, 高铁杠.
基于Hachimoji DNA和QR分解的遥感图像可逆隐藏算法
Reversible Hidden Algorithm for Remote Sensing Images Based on Hachimoji DNA and QR Decomposition
计算机科学, 2022, 49(8): 127-135. https://doi.org/10.11896/jsjkx.210700216
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[12] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[13] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[14] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[15] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!