计算机科学 ›› 2022, Vol. 49 ›› Issue (10): 183-190.doi: 10.11896/jsjkx.210800052

• 计算机图形学&多媒体 • 上一篇    下一篇

面向轻量化医学图像分割网络的神经结构搜索

张福昌, 仲国强, 毛玉旭   

  1. 中国海洋大学信息科学与工程学部 山东 青岛 266100
  • 收稿日期:2021-08-05 修回日期:2022-03-11 出版日期:2022-10-15 发布日期:2022-10-13
  • 通讯作者: 仲国强(gqzhong@ouc.edu.cn)
  • 作者简介:(zfc_1527@163.com)
  • 基金资助:
    国家重点研发计划(2018AAA0100400);装备预研教育部联合基金(6141A020337);山东省自然科学基金(ZR2020MF131);福建省医疗数据挖掘与应用工程技术研究中心开放课题(MDM2018007);青岛市科技计划(21-1-4-ny-19-nsh)

Neural Architecture Search for Light-weight Medical Image Segmentation Network

ZHANG Fu-chang, ZHONG Guo-qiang, MAO Yu-xu   

  1. College of Information Science and Engineering,Ocean University of China,Qingdao,Shandong 266100,China
  • Received:2021-08-05 Revised:2022-03-11 Online:2022-10-15 Published:2022-10-13
  • About author:ZHANG Fu-chang,born in 1996,postgraduate.His main research interests include neural architecture search and image processing.
    ZHONG Guo-qiang,born in 1981,professor,Ph.D supervisor,is a senior member of China Computer Federation.His main research interests include pattern recognition,machine learning and computer vision.
  • Supported by:
    National Key Research and Development Program of China(2018AAA0100400),Joint Fund of the Equipments Pre-Research and Ministry of Education of China(6141A020337),Natural Science Foundation of Shandong Province(ZR2020MF131),Open Fund of Engineering Research Center for Medical Data Mining and Application of Fujian Province(MDM2018007) and Science and Technology Program of Qingdao(21-1-4-ny-19-nsh).

摘要: 现有的性能优异的医学图像分割模型大都由领域专家手动设计,设计过程往往需要大量专业知识和反复实验。此外,过度复杂的分割模型不仅对硬件资源有较高要求,且分割效率较低。为此,提出了用于自动构建轻量化医学图像分割网络的神经结构搜索方法Auto-LW-MISN(Automatically Light-Weight Medical Image Segmentation Network)。通过构建轻量级搜索空间、设计适用于医学图像分割的搜索超网络、设计添加复杂性约束的可微分搜索策略,建立用于自动搜索轻量化医学图像分割网络的神经结构搜索框架。在显微镜细胞图像、肝脏CT图像和前列腺MR图像等数据集上进行实验,结果表明,Auto-LW-MISN能够针对不同模态的医学图像自动构建轻量化的分割模型,其分割精度相比U-net,Attention U-net,Unet++和NAS-Unet等方法均有提高。

关键词: 深度学习, 可微分神经结构搜索, 轻量化卷积神经网络, 自动化网络结构设计, 医学图像分割

Abstract: Most of the existing medical image segmentation models with excellent performance are manually designed by domain experts.The design process usually requires a lot of professional knowledge and repeated experiments.In addition,the over complex segmentation model not only has high requirements for hardware resources,but also has low segmentation efficiency.An neural architecture search method named Auto-LW-MISN(Automatically Light-weight Medical Image Segmentation Network) is proposed for automatic construction of light-weight medical image segmentation network.In this paper,by constructing a light-weight search space,designing a search super network for medical image segmentation,and designing a differentiable search stra-tegy with complexity constraints,a neural architecture search framework for automatic search of light-weight medical image segmentation network is established.Experimental results on microscope cell images,liver CT images and prostate MR images show that Auto-LW-MISN can automatically construct light-weight segmentation models for different modes of medical images,and its segmentation accuracy is improved compared with U-net,Attention U-net,Unet++and NAS-Unet.

Key words: Deep learning, Differentiable neural architecture search, Light-weight convolutional neural networks, Automatic network architecture design, Medical image segmentation

中图分类号: 

  • TP391
[1]LIU C,XIAO Z Y,DU N M.Application of Improved Convolutional Neural Network in Medical Image Segmentation [J].Computer Science and Exploration,2019,13(9):1593-1603.
[2]XU H,SUI L,ZHANG J W,et al.Research Progress of Convolutional Neural Network in Medical Image Segmentation [J].Chinese Journal of Medical Physics,2019,36(11):1302-1306.
[3]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Compu-ter-Assisted Intervention.Springer,2015:234-241.
[4]KOREZ R,LIKAR B,PERNUS F,et al.Model-Based Segmentation of Vertebral Bodies from MR Images with 3D CNNs[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Springer,2016:433-441.
[5]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-net:Learning Where to Look for the Pancreas[J].arXiv:1804.03999,2018.
[6]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2016:770-778.
[7]ALOM M Z,HASAN M,YAKOPCIC C,et al.Recurrent Resi-dual Convolutional Neural Network based on U-net(R2U-net) for Medical Image Segmentation[J].arXiv:1802.06955,2018.
[8]LIU H,SIMONYAN K,YANG Y.DARTS:Differentiable Architecture Search[J].arXiv:1806.09055,2018.
[9]FANG J,SUN Y,ZHANG Q,et al.Densely Connected Search Space for More Flexible Neural Architecture Search[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2020:10625-10634.
[10]LI G,QIAN G,DELGADILLO I C,et al.SGAS:SequentialGreedy Architecture Search[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2020:1617-1627.
[11]WAN A,DAI X,ZHANG P,et al.FBNetV2:DifferentiableNeural Architecture Search for Spatial and Channel Dimensions[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2020:12962-12971.
[12]DAI X,WAN A,ZHANG P,et al.FBNetV3:Joint Architecture-Recipe Search Using Predictor Pretraining[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2021:16276-16285.
[13]WENG Y,ZHOU T,LI Y,et al.NAS-Unet:Neural Architecture Search for Medical Image Segmentation[J/OL].IEEE Access,2019,7:44247-44257.https://ieeexplore.ieee.org/document/8681706.
[14]MORTAZI A,BAGCI U.Automatically Designing CNN Architectures for Medical Image Segmentation[C]//Machine Lear-ning in Medical Imaging-9th International Workshop.Sprin-ger,2018:98-106.
[15]LI G,ZHANG X,WANG Z,et al.StacNAS:Towards Stable andConsistent Differentiable Neural Architecture Search[J].arXiv:1909.11926,2019.
[16]YU F,KOLTUN V.Multi-scale Context Aggregation by Dilated Convolutions[J].arXiv:1511.07122,2015.
[17]HAN K,WANG Y,TIAN Q,et al.GhostNet:More Features From Cheap Operations[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2020:1577-1586.
[18]LI X,WANG W,HU X,et al.Selective Kernel Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2019:510-519.
[19]ZHANG X,ZHOU X,LIN M,et al.ShuffleNet:An Extremely Efficient Convolutional Neural Network for Mobile Devices[C]//IEEE Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE Computer Society,2018:6848-6856.
[20]CAICEDO J,GOODMAN A,KARHOHS K,et al.Nucleus Segmentation Across Imaging Experiments:the 2018 Data Science Bowl[J].Nature Methods,2019,16(12):1247-1253.
[21]DEVRIES T,TAYLOR G W.Improved Regularization of Con-volutional Neural Networks with Cutout[J].arXiv:1708.04552,2017.
[22]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:A Nested U-net Architecture for Medical Image Segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Cham:Springer,2018:3-11.
[23]KAVUR A E,SELVER M A,DICLE O,et al.Chaos-combined(CT-MR) Healthy Abdominal Organ Segmentation Challenge Data[C]//IEEE International Symposium on Biomedical Imaging(ISBI).Imag.(ISBI),2019.
[24]LIU C,CHEN L C,SCHROFF F,et al.Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Computer Vision Foundation/IEEE,2019:82-92.
[25]LITJENS G,TOTH R,VAN DE VEN W,et al.Evaluation of Prostate Segmentation Algorithms for MRI:the PROMISE12 Challenge[J].Medical Image Analysis,2014,18(2):359-373.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[5] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[9] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[10] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
[14] 楚玉春, 龚航, 王学芳, 刘培顺.
基于YOLOv4的目标检测知识蒸馏算法研究
Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4
计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204
[15] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!