计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 210900198-7.doi: 10.11896/jsjkx.210900198

• 图像处理&多媒体技术 • 上一篇    下一篇

基于少样本的太阳射电爆发事件检测研究

郭军成1, 万刚1, 胡欣杰1, 王帅1, 严发宝2   

  1. 1 航天工程大学航天信息学院 北京 101416
    2 山东大学空间科学研究院空间电磁探测技术实验室 山东 威海 264200
  • 出版日期:2022-11-10 发布日期:2022-11-21
  • 通讯作者: 王帅(mage1120@foxmail.com)
  • 作者简介:(chen101416@foxmail.com)

Study on Solar Radio Burst Event Detection Based on Transfer Learning

GUO Jun-cheng1, WAN Gang1, HU Xin-jie1, WANG Shuai1, YAN Fa-bao2   

  1. 1 School of Aerospace Information,Space Engineering University,Beijing 101416,China
    2 Laboratory of Space Electromagnetic Detection Technology,Shandong University,Weihai,Shandong 264200,China
  • Online:2022-11-10 Published:2022-11-21
  • About author:GUO Jun-chen,born in 1996,postgra-duate.His main research interests include intelligent information processing and image analysis.
    WANG Shuai,born in 1992,Ph.D,lecturer.His main research interests include machine learning and space weather.

摘要: 太阳射电爆发事件与多种太阳活动紧密相关,对不同类型的射电爆发事件进行研究有助于提高对太阳活动物理机制的理解,加强对空间天气的判读能力。为解决以往传统射电爆发事件检测方法存在的样本数据量小、检测速度慢、定位准确度低、人为因素干扰大等问题,文中提出采用基于深度学习的少样本目标检测方法对太阳射电频谱图中的不同射电爆发事件进行自动识别和定位。首先,由于目前缺乏公开的射电爆发事件检测数据集,基于美国绿岸太阳射电爆发频谱仪所观测到的射电频谱数据,构建了具有3种爆发类型、共745张图像的少样本目标检测数据集;然后,利用基于迁移学习的少样本学习方法解决了射电爆发事件检测数据集样本量少的问题。实验结果表明,所提方法具有可行性和有效性。

关键词: 太阳射电频谱, 目标检测, 迁移学习, 少样本学习

Abstract: Solar radio burst events are closely related to a variety of solar activities.The study of different types of radio burst events will help to improve the understanding of the physical mechanism of solar activities and strengthen the ability to interpret space weather.In order to solve the problems of small sample data,slow detection speed,low positioning accuracy and large interference of human factors in the traditional radio burst event detection methods,a small sample target detection method based on deep learning is proposed to automatically identify and locate different radio burst events in the solar radio spectrum.Firstly,due to the lack of public radio burst event detection data set,based on the radio spectrum data observed by the green bank solar radio burst spectrometer in United States,a small sample domain target detection data set with three burst types and 745 images is constructed.Then,the small sample learning method based on transfer learning is used to solve the problem of small sample data in radio burst event detection data set.Experimental results show that the proposed method is feasible and effective.

Key words: Solar radio spectrum, Object detection, Transfer learning, Few-shot learning

中图分类号: 

  • TP391.1
[1]TAN C M.Study on radio burst of solar activity and comprehen-sive analysis of multiband observation[D].Beijing:National Astronomical Observatory,Chinese Academy of Sciences,2007.
[2]LOBZIN V V,CAIRNS I H,ROBINSON P A,et al.Automatic recognition of coronal type II radio bursts:the automated radio burst identification system method and first observations[J].The Astrophysical Journal Letters,2010,710(1):L58.
[3]LOBZIN V V,CAIRNS I H,ROBINSON P A,et al.Automatic recognition of type III solar radio bursts:automated radio burst identification system method and first observations[J].Space Weather the International Journal of Research & Applications,2009,7(4):102-114.
[4]SALMANE H,WEBER R,ABED-MERAIM K,et al.A method for the automated detection of solar radio bursts in dynamic spectra[J].Journal of Space Weather and Space Climate,2018,8(6):58-69.
[5]ZHANG P J,WANG C B,YE L.A type III radio burst automa-tic analysis system and statistic results for a half solar cycle with Nanay Decameter Array data[J].Astronomy and Astrophy-sics,2018,6(4):92-108.
[6]ZHANG Q M.Research on classification and location detection methods of solar radio burst events[D].Weihai:Shandong University,2020.
[7]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Computer Society.IEEE Computer Society,2013.
[8]GIRSHICK R.Fast R-CNN[J].arXiv e-prints,2015.
[9]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:to-wards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[10]HUANG J,ZHANG G.Survey of object detection algorithmsfor deep convolutional neural networks[J].Computer Enginee-ring and Applications,2020,56(17):12-23.
[11]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[J].arXiv e-prints,2016.
[12]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE,2017:6517-6525.
[13]REDMON J,FARHADI A.YOLOv3:An incremental improvement[J].arXiv e-prints,2018.
[14]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016.
[15]FU C Y,LIU W,RANGA A,et al.DSSD:deconvolutional single shot detector[J].arXiv e-prints,2017.
[16]HAN Y S,MA S P,HE L Y,et al.Detection of the object in the fast remote sensing airport area on the improved YOLOv3[J].Journal of Xidian University,2021,48(5):43-51.
[17]ZHAO K L,JIN X L,WANG Y Z.Survey on few-shot learning[J].Journal of Software,2021,32(2):349-369.
[18]WU T,LIU Y Q,JIANG S H.Research on SAR image ve hicle target recognition method based on transfer learning[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2021,44(2):58-64.
[1] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[2] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[3] 王灿, 刘永坚, 解庆, 马艳春.
基于软标签和样本权重优化的Anchor Free目标检测算法
Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization
计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240
[4] 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰.
基于多源迁移学习的大坝裂缝检测
Dam Crack Detection Based on Multi-source Transfer Learning
计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124
[5] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[6] 马宾, 付永康, 王春鹏, 李健, 王玉立.
基于GDIoU损失函数的YOLOv4绝缘子高效定位算法
High Performance Insulators Location Scheme Based on YOLOv4 with GDIoU Loss Function
计算机科学, 2022, 49(6A): 412-417. https://doi.org/10.11896/jsjkx.210600089
[7] 陈永平, 朱建清, 谢懿, 吴含笑, 曾焕强.
基于外接圆半径差损失的实时安全帽检测算法
Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss
计算机科学, 2022, 49(6A): 424-428. https://doi.org/10.11896/jsjkx.220100252
[8] 陈佳舟, 赵熠波, 徐阳辉, 马骥, 金灵枫, 秦绪佳.
三维城市场景中的小物体检测
Small Object Detection in 3D Urban Scenes
计算机科学, 2022, 49(6): 238-244. https://doi.org/10.11896/jsjkx.210400174
[9] 彭云聪, 秦小林, 张力戈, 顾勇翔.
面向图像分类的小样本学习算法综述
Survey on Few-shot Learning Algorithms for Image Classification
计算机科学, 2022, 49(5): 1-9. https://doi.org/10.11896/jsjkx.210500128
[10] 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇.
深度卷积神经网络图像实例分割方法研究进展
Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network
计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038
[11] 徐涛, 陈奕仁, 吕宗磊.
基于改进YOLOv3的机坪工作人员反光背心检测研究
Study on Reflective Vest Detection for Apron Workers Based on Improved YOLOv3 Algorithm
计算机科学, 2022, 49(4): 239-246. https://doi.org/10.11896/jsjkx.210200119
[12] 谭珍琼, 姜文君, 任演纳, 张吉, 任德盛, 李晓鸿.
基于二分图的个性化学习任务分配
Personalized Learning Task Assignment Based on Bipartite Graph
计算机科学, 2022, 49(4): 269-281. https://doi.org/10.11896/jsjkx.210500125
[13] 左杰格, 柳晓鸣, 蔡兵.
基于图像分块与特征融合的户外图像天气识别
Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion
计算机科学, 2022, 49(3): 197-203. https://doi.org/10.11896/jsjkx.201200263
[14] 张侣, 周博文, 吴亮红.
基于改进卷积注意力模块与残差结构的SSD网络
SSD Network Based on Improved Convolutional Attention Module and Residual Structure
计算机科学, 2022, 49(3): 211-217. https://doi.org/10.11896/jsjkx.201200019
[15] 张舒萌, 余增, 李天瑞.
跨领域文本的可迁移情绪分析方法
Transferable Emotion Analysis Method for Cross-domain Text
计算机科学, 2022, 49(3): 218-224. https://doi.org/10.11896/jsjkx.210400034
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!