计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 59-65.doi: 10.11896/jsjkx.211000123

• 联邦学习* 上一篇    下一篇

基于联邦学习的车联网多维资源动态分配算法

吴赟寒, 白光伟, 沈航   

  1. 南京工业大学计算机科学与技术学院 南京211816
  • 收稿日期:2021-10-18 修回日期:2022-03-23 发布日期:2022-12-14
  • 通讯作者: 白光伟(bai@njtech.edu.cn)
  • 作者简介:(Wyh1130@outlook.com)
  • 基金资助:
    国家自然科学基金(61502230) ;江苏省自然科学基金(BK20201357)

Multi-dimensional Resource Dynamic Allocation Algorithm for Internet of Vehicles Based on Federated Learning

WU Yun-han, BAI Guang-wei, SHEN Hang   

  1. College of Computer Science and Technology,Nanjing Tech University,Nanjing 211816,China
  • Received:2021-10-18 Revised:2022-03-23 Published:2022-12-14
  • About author:WU Yun-han,born in 1996,master.His main research interests include Internet of vehicles and federated learning.BAI Guang-wei,born in 1961,Ph.D,professor,doctoral supervisor,is a member of China Computer Federation.His main research interests include mobile Internet,Internet of vehicles,artificial intelligence and so on.
  • Supported by:
    National Natural Science Foundation of China(61502230) and Natural Science Foundation of Jiangsu Province,China(BK20201357).

摘要: 考虑到车联网系统中多维资源消耗会随时间波动的特性和用户对高效计算服务以及数据隐私安全的需求,提出了一种基于联邦学习的车联网多维资源分配方法。一方面,综合考虑计算、缓存和带宽资源分配,保证计算任务的完成率,避免多维资源的冗余分配,基于该目标设计了一种深度学习算法,通过边缘服务器收集的数据预测各项资源的消耗量,以此为依据分配多维资源;另一方面,考虑到用户的数据隐私安全需求造成的数据孤岛问题,采用联邦学习架构以获得泛化性较好的神经网络模型。该算法能随时间调整多维资源的分配量,满足随时间变动的资源需求,保证车联网系统中计算任务的高效完成。实验结果表明该算法具有收敛速度快、模型泛化性好等特点,能以较少的通信轮数完成联邦学习的聚合。

关键词: 车辆网络, 联邦学习, 多维资源分配, 计算迁移, 机器学习

Abstract: In consideration of the characteristics of multi-dimensional resource consumption fluctuating with time in the Internet of Vehicles system and users’ demands for efficient computing services and data privacy and security,this paper proposes a me-thod of multi-dimensional resource allocation for Internet of Vehicles based on federated learning.On the one hand,the allocation of computing,cache and bandwidth resources is considered comprehensively to ensure the completion rate of computing tasks and avoid the redundant allocation of multidimensional resources.For this purpose,a deep learning algorithm is designed to predict the consumption of various resources through the data collected by edge servers.On the other hand,considering the data island problem caused by users’ data privacy and security requirements,federated learning architecture is adopted to obtain a neural network model with better generalization.The proposed algorithm can not only adjust the allocation of multi-dimensional resources over time,but also meet the resource requirements that change over time,and ensure the efficient completion of computing tasks in the Internet of Vehicles system.Experimental results show that the algorithm has the characteristics of fast convergence and good model generalization,and can complete the aggregation of federated learning with fewer communication rounds.

Key words: Vehicle networks, Federated learning, Multi-dimensional resource allocation, Computational migration, Machine lear-ning

中图分类号: 

  • TP393
[1]WANG C,LIANG C,YU F R,et al.Computation offloading and resource allocation in wireless cellular networks with mobile edge computing[J].IEEE Transactions on Wireless Communications,2017,16(8):4924-4938.
[2]HABER E E,NGUYEN T M,ASSI C.Joint optimization ofcomputational cost and devices energy for task offloading in multi-tier edge-clouds[J].IEEE Transactions on Communications,2019,67(5):3407-3421.
[3]ZHANG T,WANG Y,LIU Y,et al.Cache-enabling UAV communications:Network deployment and resource allocation[J].IEEE Transactions on Wireless Communications,2020,19(11):7470-7483.
[4]CHEN J,WU H,YANG P,et al.Cooperative Edge CachingWith Location-Based and Popular Contents for Vehicular Networks[J].IEEE Transactions on Vehicular Technology,2020,69(9):10291-10305.
[5]YAN M,FENG G,ZHOU J,et al.Intelligent resource scheduling for 5G radio access network slicing[J].IEEE Transactions on Vehicular Technology,2019,68(8):7691-7703.
[6]CHEN J,YANG P,YE Q,et al.Learning-Based Proactive Resource Allocation for Delay-Sensitive Packet Transmission[J].IEEE Transactions on Cognitive Communications and Networking,2020,7(2):675-688.
[7]PENG H,SHEN X.Multi-Agent Reinforcement Learning Based Resource Management in MEC-and UAV-Assisted Vehicular Networks[J].IEEE Journal on Selected Areas in Communications,2020,39(1):131-141.
[8]LI R,WANG C,ZHAO Z,et al.The LSTM-based advantage actor-critic learning for resource management in network slicing with user mobility[J].IEEE Communications Letters,2020,24(9):2005-2009.
[9]LIU C H,CHEN Z,TANG J,et al.Energy-efficient UAV control for effective and fair communication coverage:A deep reinforcement learning approach[J].IEEE Journal on Selected Areas in Communications,2018,36(9):2059-2070.
[10]LI J,ZHOU Y,LAMONT L.Communication architectures and protocols for networking unmanned aerial vehicles[C]//2013 IEEE Globecom Workshops(GC Wkshps).IEEE,2013:1415-1420.
[11]SALLENT O,PEREZ-ROMERO J,FERRUS R,et al.On radio access network slicing from a radio resource management perspective[J].IEEE Wireless Communications,2017,24(5):166-174.
[12]PENG H,SHEN X.DDPG-based resource management forMEC/UAV-assisted vehicular networks[J].arXiv:2009.03721,2020.
[13]WU H,CHEN J,XU W,et al.Delay-Minimized Edge Caching in Heterogeneous Vehicular Networks:A Matching-Based Approach[J].IEEE Transactions on Wireless Communications,2020,19(10):6409-6424.
[14]SAMARAKOON S,BENNIS M,SAAD W,et al.Distributedfederated learning for ultra-reliable low-latency vehicular communications[J].IEEE Transactions on Communications,2019,68(2):1146-1159.
[15]DINH C,TRAN N H,NGUYEN M N H,et al.Federated lear-ning over wireless networks:Convergence analysis and resource allocation[J].arXiv:1910.13067,2019.
[16]WADU M M,SAMARAKOON S,BENNIS M.Federated learning under channel uncertainty:Joint client scheduling and resource allocation[C]//2020 IEEE Wireless Communications and Networking Conference(WCNC).IEEE,2020:1-6.
[17]CHEN M,YANG Z,SAAD W,et al.A joint learning and communications framework for federated learning over wireless networks[J].IEEE Transactions on Wireless Communications,2020,20(1):269-283.
[18]FOTOUHI A,QIANG H,DING M,et al.Survey on UAV cellular communications:Practical aspects,standardization advancements,regulation,and security challenges[J].IEEE Communications Surveys & Tutorials,2019,21(4):3417-3442.
[19]XIONG Z,ZHANG Y,NIYATO D,et al.Deep reinforcement learning for mobile 5G and beyond:Fundamentals,applications,and challenges[J].IEEE Vehicular Technology Magazine,2019,14(2):44-52.
[20]SHI W,ZHOU H,LI J,et al.Drone assisted vehicular net-works:Architecture,challenges and opportunities[J].IEEE Network,2018,32(3):130-137.
[21]MOTHUKURI V,PARIZI R M POURIYEH S,et al.A survey on security and privacy of federated learning[J].Future Generation Computer Systems,2021,115(2):619-640.
[22]GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al.LSTM:A search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222-2232.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 冷典典, 杜鹏, 陈建廷, 向阳.
面向自动化集装箱码头的AGV行驶时间估计
Automated Container Terminal Oriented Travel Time Estimation of AGV
计算机科学, 2022, 49(9): 208-214. https://doi.org/10.11896/jsjkx.210700028
[3] 刘兴光, 周力, 刘琰, 张晓瀛, 谭翔, 魏急波.
基于边缘智能的频谱地图构建与分发方法
Construction and Distribution Method of REM Based on Edge Intelligence
计算机科学, 2022, 49(9): 236-241. https://doi.org/10.11896/jsjkx.220400148
[4] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[5] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[6] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[7] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[8] 张光华, 高天娇, 陈振国, 于乃文.
基于N-Gram静态分析技术的恶意软件分类研究
Study on Malware Classification Based on N-Gram Static Analysis Technology
计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203
[9] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[10] 李亚茹, 张宇来, 王佳晨.
面向超参数估计的贝叶斯优化方法综述
Survey on Bayesian Optimization Methods for Hyper-parameter Tuning
计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208
[11] 赵璐, 袁立明, 郝琨.
多示例学习算法综述
Review of Multi-instance Learning Algorithms
计算机科学, 2022, 49(6A): 93-99. https://doi.org/10.11896/jsjkx.210500047
[12] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于DBSCAN聚类的集群联邦学习方法
Clustered Federated Learning Methods Based on DBSCAN Clustering
计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059
[13] 肖治鸿, 韩晔彤, 邹永攀.
基于多源数据和逻辑推理的行为识别技术研究
Study on Activity Recognition Based on Multi-source Data and Logical Reasoning
计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270
[14] 闫萌, 林英, 聂志深, 曹一凡, 皮欢, 张兰.
一种提高联邦学习模型鲁棒性的训练方法
Training Method to Improve Robustness of Federated Learning
计算机科学, 2022, 49(6A): 496-501. https://doi.org/10.11896/jsjkx.210400298
[15] 姚烨, 朱怡安, 钱亮, 贾耀, 张黎翔, 刘瑞亮.
一种基于异质模型融合的 Android 终端恶意软件检测方法
Android Malware Detection Method Based on Heterogeneous Model Fusion
计算机科学, 2022, 49(6A): 508-515. https://doi.org/10.11896/jsjkx.210700103
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!