计算机科学 ›› 2023, Vol. 50 ›› Issue (6A): 220300018-6.doi: 10.11896/jsjkx.220300018

• 人工智能 • 上一篇    下一篇

基于情感-主题-讽刺混合模型的讽刺检测研究

付月1, 史伟2   

  1. 1 湖州学院经济管理学院 浙江 湖州 313000;
    2 浙江海洋大学经济与管理学院 浙江 舟山 316022
  • 出版日期:2023-06-10 发布日期:2023-06-12
  • 通讯作者: 史伟 (shiwei@zjhu.edu.cn)
  • 作者简介:(286824081@qq.com)
  • 基金资助:
    国家社会科学基金一般项目(20BXW013)

Study on Satire Detection Based on Sentiment-Topic-Satire Hybrid Model

FU Yue1, SHI We2   

  1. 1 School of Economics and Management,Huzhou College,Huzhou,Zhejiang 313000,China;
    2 School of Economics and Management,Zhejiang Dcean University,Zhoushan,Zhejiang 316022,China
  • Online:2023-06-10 Published:2023-06-12
  • About author:FU Yue,born in 1983,master,lecturer.Her main research interests include network public opinion and text mining.SHI Wei,born in 1981, Ph.D, profes-sor.His main research interests include business intelligence and affec affective computing.
  • Supported by:
    This work was supported by General Program of National Social Science Foundation of China(20BXW013).

摘要: 讽刺检测是观点挖掘的一个子任务,主要目的是识别用户在书面文本中表达的观点或情感。文本中讽刺句往往具有混合的情感极性,正确识别讽刺句和非讽刺句在情感分析中起着至关重要的作用。讽刺检测方法一般都采用机器学习分类器,其中分类器的训练主要基于简单的词汇或基于词典的特征。本研究的目的是建立一个无监督的概率关系模型,根据微博中词语的情感分布来识别讽刺主题。模型基于主题级分布估计相关情感,评估出现在短文本中的情感相关词,给出情感相关标签。实验结果表明,该模型在讽刺检测方面优于其他最新的基线模型,非常适合于短文本的讽刺预测。

关键词: 讽刺, 情感分析, 观点挖掘, 主题模型

Abstract: Satire detection is a subtask of opinion mining.Its main purpose is to identify the opinion or emotions expressed by users in written texts.Satirical sentences in texts often have mixed sentiment polarity.Correctly identifying satirical sentences and non satirical sentences plays an important role in sentiment analysis.Various satire detection methods are based on machine lear-ning classifiers,in which the training of classifiers is mainly based on simple words or dictionary features.The purpose of this studyis to establish an unsupervised probabilistic relationship model to identify satirical themes according to the sentiment distribution of words in microblog.The model estimates the related sentiment based on the topic level distribution,evaluates the sentiment related words appearing in the short text,and gives the sentiment related labels.Experimental results show that the model is superior to other latest baseline models in satire detection,and is very suitable for satire prediction of short text.

Key words: Satire, Sentiment analysis, Opinion mining, Topic model

中图分类号: 

  • TP391.1
[1]BOUAZIZI M,OHTSUKI T.Sarcasm Detection in Twitter:“All products are Incredibly amazing !!!”-Are they really?[C]//IEEE Global Communications Conference.Keio University,Japan,2014.
[2]CHUN-CHE P,MOHAMMAD L,JAN W P.Detecting sarcasm in text:an obvious solution to a trivial problem[R].Stanford CS 229 Machine Learning,2015.
[3]ASHRAF K,MUHAMMAD A.CATBiGRU:Convolution andAttention with BiDirectional Gated Recurrent Unit for SelfDeprecating Sarcasm Detection[J].Cognitive Computation,2021,1:78-97.
[4]RAJADESINGAN R,ZAFARANI H L.Sarcasm detection onTwitter:a behavioural modelling approach[C]//Proceedings of 18th ACM International Conference on Web Search Data Mining.2015:9-106.
[5]YOGESH K,NIKITA G.AI-Based Learning Techniques forSarcasm Detection of Social Media Tweets:State-of-the-Art Survey[J].SN Computer Science,2020,1(318):20-34.
[6]ZHANG Q L,DU J C,XU R F.Sarcasm Detection Based on Adversarial Learning[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2019,55(1):29-36.
[7]HAN H,ZHAO Q T,SUN T Y,et al.Contextual Sarcasm Detection Model for Social Media Comments[J].Computer Engineering,2021,47(1):66-71.
[8]VALDIVIA A,MARTÍNEZ-CÁMARA E,CHATURVEDI I,et al.What do people think about this monument? Understanding negative reviews via deep learning,clustering and descriptive rules[J].J Ambient Intell Human Comput,2020,11:39-52.
[9]JOSHI A,VAIBHAV T,PUSHPAK B,et al.Harnessing se-quence labeling for sarcasm detection in dialogue from tv series friends[C]//CoNLL.Berlin,Germany:ACL’s Special Interest Group on Natural Language Learning,2016:146-155.
[10]SILVIO A B C,WALLACE H L,PAULA CARVALHO M J S.Modelling context with user embeddings for sarcasm detection in social media[C]//CoNLL.Berlin,Germany:ACL’s Special Interest Group on Natural Language Learning,2016:167-179.
[11]WANG Z L,WU Z J,REN Y F,et al.Twitter sarcasm detection exploiting a context based model[C]//Web Information Systems Engineering-WISE.Springer,Miami,FL,USA,2015:77-91.
[12]HERNANDEZ-FARIAS,BENED J,ROSSO P.Applying basic features from sentiment analysis for automatic irony detection[C]//Pattern Recognition and Image Analysis.Springer,USA,2015:337-344.
[13]NIMALA K,JEBAKUMAR A.A robust user sentiment biterm topic mixture model based on user aggregation strategy to avoid data sparsity for short text[J].J Med Syst,2019,43(93):32-48.
[14]RAJADESINGAN A,ZAFARANI R,LIU H.Sarcasm detection on twitter:a behavioral modeling approach[C]//Proceedings of the 8th ACM International Conference on Web Search and Data Mining.ACM Press,2015:97-106.
[15]WEITZEL L,PRATI R C,AGUIAR R F.The comprehension of figurative language:what is the influence of irony and sarcasm on NLP techniques?[M]//Sentiment Analysis and Ontdogy Engineering.New York:Springer,2016:49-74.
[16]XIONG T,ZHANG P,ZHU H,et al.Sarcasm Detection withSelf-matching Networks and Low-rank Bilinear Pooling[C]//Proceeding of WWW ’19.Raleigh North Carolina,USA:ACM,2019:2115-2124.
[17]SHI W,WANG H W,HE S Y.Study on construction of fuzzy Emotion ontology Based on HowNet[J]. Journal of the China Society for Scientific and Technical Information,2012(6):595-602.
[18]HowNet[OL].http://www.keenage.com.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!