计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 146-154.doi: 10.11896/jsjkx.220400227
赵松, 傅豪, 王洪星
ZHAO Song, FU Hao, WANG Hongxing
摘要: 无监督视频异常检测方法通常使用正常的监控视频数据通过帧重构/帧预测方法来训练视频异常检测模型。然而,正常视频中往往包含大量的相似画面和背景帧,数据集冗余的问题尤为明显,因此不能高效地进行异常检测模型训练。针对该问题,提出了伪异常选择驱动学习的视频异常检测方法,从原始视频训练数据中迭代选取部分异常分数高的正常视频帧(伪异常帧)来构建新的训练池,用于学习和优化视频异常检测模型。在检测模型方面,设计了基于后继帧预测的双路U-Net骨干网络,以不同采样率的视频段分别作为两个支路的输入,从而从多个粒度上更好地提取和利用视频的时空特征。为了加强典型训练数据对帧预测任务和异常检测的影响,双路U-Net中设计了多层的记忆学习模块。在常用视频异常检测数据集上进行实验,验证了所提方法在检测精度和训练效率上的有效性。
中图分类号:
[1]CHANDOLA V,BANERJEEA,KUMAR V.Anomaly detec-tion:A survey[J].ACM Computing Surveys,2009,41(3):1-58. [2]CHALAPATHY R,CHAWLA S.Deep learning for anomalydetection:A survey[J].arXiv:1901.03407,2019. [3]FU Z,HU W,TAN T.Similarity based vehicle trajectory clustering and anomaly detection[C]//Proceedings of the IEEE International Conference on Image Processing.2005:II-602. [4]HASANM,CHOI J,NEUMANN J,et al.Davis.Learning temporal regularity in video sequences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:733-742. [5]ABATI D,PORRELLO A,CALDERARA S,et al.Latent space autoregression for novelty detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:481-490. [6]LIU W,LUO W,LIAN D,et al.Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6536-6545. [7]HAO H W,JIANG R R.Training sample selection method for neural networks based on nearest neighbor rule[J].Acta Automatica Sinica,2007,33(12):1247-1251. [8]MARKOVITZ A,SHARIR G,FRIEDMAN I,et al.Graph embedded pose clustering for anomaly detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020:10536-10544. [9]FEICHTENHOFER C,FAN H,MALIK J,et al.Slowfast networks for video recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6202-6211. [10]LENG J X,TAN M P,HU B,et al.Video Anomaly Detection Based on Implicit View Transformation[J].Computer Science,2022,49(2):142-148. [11]PARK H,NOH J,HAM B.Learning memory guided normality for anomaly detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020:14372-14381. [12]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmen-tation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.2015:234-241. [13]FANG Z,LIANG J,ZHOU J,et al.Anomaly Detection with Bidirectional Consistency in Videos[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(3):1079-1092. [14]XU D,YAN Y,RICCI E,et al.Detecting anomalous events invideos by learning deep representations of appearance and motion[J].Computer Vision and Image Understanding,2017,156:117-127. [15]YU G,WANG D,CAI X,et al.Cloze test helps:Effective video anomaly detection via learning to complete video events[C]//Proceedings of the ACM International Conference on Multimedia.2020:583-591. [16]CHANG Y,TU Z,XIE W,et al.Clustering driven deep autoencoder for video anomaly detection[C]//Proceedings of the European Conference on Computer Vision.2020:329-345. [17]HAO Y,LI J,WANG N,et al.Spatiotemporal consistency-enhanced network for video anomaly detection[J].Pattern Recognition,2022,121:108232. [18]GEORGESCU M,BARBALAU A,IONESCU R,et al.Anomaly detection in video via self-supervised and multi-task learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:12742-12752. [19]GRAVES A,MOHAMED A,HINTON G.Speech recognition with deep recurrent neural networks[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.2013:6645-6649. [20]SHI X,CHEN Z,WANG H,et al.Convolutional LSTM Net-work:A machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems.2015:802-810. [21]WESTON J,CHOPRA S,BORDES A.Memory networks[J].arXiv:1410.3916,2014. [22]WANG X,DU Y,LIN S,et al.adVAE:a self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection[J].Knowledge-Based Systems,2019,190:105187. [23]HAN T,XIE W A.Zisserman.Memory augmented dense predictive coding for video representation learning[C]//Proceedings of the European Conference on Computer Vision.2020:312-329. [24]SUKHBAATAR S,SZLAM A,WESTON J,et al.End-to-end memory networks[J].arXiv:1503.08895,2015. [25]MILLER A,FISCH A,DODGE J,et al.Key-value memory networks for directly reading documents[J].arXiv:1606.03126,2016. [26]GONG D,LIU L,LE V,et al.Memorizing normality to detect anomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1705-1714. [27]ZHOU Y,REN Q C,NIU H B.Research on training sample data selection methods[J].Computer Science,2020,47(11A):402-408. [28]PLUTOWSKI M,WHITE H.Selecting concise training setsfrom clean data[J].IEEE Transactions on Neural Networks,1993,4(2):305-318 [29]WANG J,NESKOVIC P,COOPER L N.Training data selection for support vector machines[C]//International Conference on Natural Computation,2005:554-564. [30]CORTES C,VAPNIK V.Support-vector networks[J].Machine learning,1995,20(3):273-297. [31]TANG K,LIN M,MINKU F,et al.Selective negative correla-tion learning approach to incremental learning[J].Neurocomputing,2009,72(13/14/15):2796-2805. [32]CONG Y,YUAN J,LIU J.Sparse reconstruction cost for abnormal event detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2011:3449-3456. [33]MAHADEVAN V,LI W,BHALODIA V,et al.Anomaly detection in crowded scenes[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010:1975-1981. [34]LU C,SHI J,AND JIA J.Abnormal event detection at 150 fps in matlab[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:2720-2727. [35]WANG Z,ZOU Y,ZHANG Z.Cluster Attention Contrast for Video Anomaly Detection[C]//Proceedings of the International Conference on Multimedia.2020:2463-2471. [36]LI B,LEROUX S,SIMOENS P.Decoupled appearance and motion learning for efficient anomaly detection in surveillance video[J].Computer Vision and Image Understanding,2021,210:103249. [37]ZHONG Y,CHEN X,JIANG J,et al.A cascade reconstruction model with generalization ability evaluation for anomaly detection in videos[J].Pattern Recognition,2022,122:108336. [38]CHANG Y,TU Z,XIE W,et al.Video anomaly detection with spatio-temporal dissociation[J].Pattern Recognition,2022,122:108213. |
[1] | 叶瀚, 李欣, 孙海春. 结合门控机制的卷积网络实体缺失检测方法 Convolutional Network Entity Missing Detection Method Combined with Gated Mechanism 计算机科学, 2023, 50(5): 262-269. https://doi.org/10.11896/jsjkx.220400126 |
[2] | 张仁斌, 左艺聪, 周泽林, 王龙, 崔宇航. 基于多模态生成对抗网络的多元时序数据异常检测 Multimodal Generative Adversarial Networks Based Multivariate Time Series Anomaly Detection 计算机科学, 2023, 50(5): 355-362. https://doi.org/10.11896/jsjkx.220400221 |
[3] | 饶丹, 时宏伟. 基于深度聚类的航空交通流识别与异常检测研究 Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering 计算机科学, 2023, 50(3): 121-128. https://doi.org/10.11896/jsjkx.220100086 |
[4] | 崔竞松, 张童桐, 郭迟, 郭文飞. 基于时延特征的网络设备异常检测 Network Equipment Anomaly Detection Based on Time Delay Feature 计算机科学, 2023, 50(3): 371-379. https://doi.org/10.11896/jsjkx.211200280 |
[5] | 徐天慧, 郭强, 张彩明. 基于全变分比分隔距离的时序数据异常检测 Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance 计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174 |
[6] | 李其烨, 邢红杰. 基于最大相关熵的KPCA异常检测方法 KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion 计算机科学, 2022, 49(8): 267-272. https://doi.org/10.11896/jsjkx.210700175 |
[7] | 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型 Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network 计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011 |
[8] | 杜航原, 李铎, 王文剑. 一种面向电商网络的异常用户检测方法 Method for Abnormal Users Detection Oriented to E-commerce Network 计算机科学, 2022, 49(7): 170-178. https://doi.org/10.11896/jsjkx.210600092 |
[9] | 陈景年. 一种适于多分类问题的支持向量机加速方法 Acceleration of SVM for Multi-class Classification 计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149 |
[10] | 高志宇, 王天荆, 汪悦, 沈航, 白光伟. 基于生成对抗网络的5G网络流量预测方法 Traffic Prediction Method for 5G Network Based on Generative Adversarial Network 计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240 |
[11] | 武玉坤, 李伟, 倪敏雅, 许志骋. 单类支持向量机融合深度自编码器的异常检测模型 Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder 计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142 |
[12] | 冷佳旭, 谭明圮, 胡波, 高新波. 基于隐式视角转换的视频异常检测 Video Anomaly Detection Based on Implicit View Transformation 计算机科学, 2022, 49(2): 142-148. https://doi.org/10.11896/jsjkx.210900266 |
[13] | 周士金, 邢红杰. 基于记忆增强 GAN 的异常检测 Memory-augmented GAN-based Anomaly Detection 计算机科学, 2022, 49(11A): 211000202-9. https://doi.org/10.11896/jsjkx.211000202 |
[14] | 刘意, 毛莺池, 程杨堃, 高建, 王龙宝. 基于邻域一致性的异常检测序列集成方法 Locality and Consistency Based Sequential Ensemble Method for Outlier Detection 计算机科学, 2022, 49(1): 146-152. https://doi.org/10.11896/jsjkx.201000156 |
[15] | 夏中, 向敏, 黄春梅. 基于CHBL的P2P视频监控网络分层管理机制 Hierarchical Management Mechanism of P2P Video Surveillance Network Based on CHBL 计算机科学, 2021, 48(9): 278-285. https://doi.org/10.11896/jsjkx.201200056 |
|