计算机科学 ›› 2023, Vol. 50 ›› Issue (5): 146-154.doi: 10.11896/jsjkx.220400227

• 计算机图形学&多媒体 • 上一篇    下一篇

伪异常选择驱动学习的视频异常检测

赵松, 傅豪, 王洪星   

  1. 重庆大学信息物理社会可信服务计算教育部重点实验室 重庆 400044
    重庆大学大数据与软件学院 重庆 400044
  • 收稿日期:2022-04-22 修回日期:2022-09-12 出版日期:2023-05-15 发布日期:2023-05-06
  • 通讯作者: 王洪星(ihxwang@cqu.edu.cn)
  • 作者简介:(zhaosong@cqu.edu.cn)
  • 基金资助:
    国家自然科学基金(61976029);重庆市技术创新与发展应用专项重点项目(cstc2021jscx-gksbX0033)

Pseudo-abnormal Sample Selection for Video Anomaly Detection

ZHAO Song, FU Hao, WANG Hongxing   

  1. Key Laboratory of Dependable Service Computing in Cyber Physical Society(Chongqing University), Ministry of Education, Chongqing 400044, China
    School of Big Data & Software Engineering,Chongqing University,Chongqing 400044,China
  • Received:2022-04-22 Revised:2022-09-12 Online:2023-05-15 Published:2023-05-06
  • About author:ZHAO Song,born in 1997,postgra-duate,is a student member of China Computer Federation.His main research interests include computer vision and video anomaly detection.
    WANG Hongxing,born in 1985,Ph.D,associate professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include computer vision and pattern recognition.
  • Supported by:
    National Natural Science Foundation of China(61976029) and Key Project of Chongqing Technology Innovation and Application Development(cstc2021jscx-gksbX0033).

摘要: 无监督视频异常检测方法通常使用正常的监控视频数据通过帧重构/帧预测方法来训练视频异常检测模型。然而,正常视频中往往包含大量的相似画面和背景帧,数据集冗余的问题尤为明显,因此不能高效地进行异常检测模型训练。针对该问题,提出了伪异常选择驱动学习的视频异常检测方法,从原始视频训练数据中迭代选取部分异常分数高的正常视频帧(伪异常帧)来构建新的训练池,用于学习和优化视频异常检测模型。在检测模型方面,设计了基于后继帧预测的双路U-Net骨干网络,以不同采样率的视频段分别作为两个支路的输入,从而从多个粒度上更好地提取和利用视频的时空特征。为了加强典型训练数据对帧预测任务和异常检测的影响,双路U-Net中设计了多层的记忆学习模块。在常用视频异常检测数据集上进行实验,验证了所提方法在检测精度和训练效率上的有效性。

关键词: 视频监控, 异常检测, 样本选择, 记忆模型, 时空特征

Abstract: Unsupervised video anomaly detection methods generally use normal video data to train an anomaly detection model through frame reconstruction or frame prediction.However,normal videos usually contain a large number of background frames and similar scenes,which are quite redundant,leading to inefficient modeling for video anomaly detection.To address this issue,this paper proposes a pseudo-abnormal sample selection method,which iteratively selects video frames with high abnormal scores from original videos to build a new concise training pool for video anomaly detection based on future frame prediction.As for the detection model,this paper designs a two-path U-Net architecture,where each path has a different sampling frequency on video frames so that spatial-temporal features of videos can be better extracted and utilized from multiple scales.In the two-path U-Net,each layer shares a memory module to strengthen the impact of typical training data for future frame prediction and video anomaly detection.Experimental evaluation on benchmark video datasets demonstrates the efficiency and effectiveness of the proposed method.

Key words: Video surveillance, Anomaly detection, Sample selection, Memory model, Spatial-Temporal feature

中图分类号: 

  • TP391.4
[1]CHANDOLA V,BANERJEEA,KUMAR V.Anomaly detec-tion:A survey[J].ACM Computing Surveys,2009,41(3):1-58.
[2]CHALAPATHY R,CHAWLA S.Deep learning for anomalydetection:A survey[J].arXiv:1901.03407,2019.
[3]FU Z,HU W,TAN T.Similarity based vehicle trajectory clustering and anomaly detection[C]//Proceedings of the IEEE International Conference on Image Processing.2005:II-602.
[4]HASANM,CHOI J,NEUMANN J,et al.Davis.Learning temporal regularity in video sequences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:733-742.
[5]ABATI D,PORRELLO A,CALDERARA S,et al.Latent space autoregression for novelty detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:481-490.
[6]LIU W,LUO W,LIAN D,et al.Future frame prediction for anomaly detection-a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6536-6545.
[7]HAO H W,JIANG R R.Training sample selection method for neural networks based on nearest neighbor rule[J].Acta Automatica Sinica,2007,33(12):1247-1251.
[8]MARKOVITZ A,SHARIR G,FRIEDMAN I,et al.Graph embedded pose clustering for anomaly detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020:10536-10544.
[9]FEICHTENHOFER C,FAN H,MALIK J,et al.Slowfast networks for video recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6202-6211.
[10]LENG J X,TAN M P,HU B,et al.Video Anomaly Detection Based on Implicit View Transformation[J].Computer Science,2022,49(2):142-148.
[11]PARK H,NOH J,HAM B.Learning memory guided normality for anomaly detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020:14372-14381.
[12]RONNEBERGER O,FISCHER P,BROX T.U-Net:convolu-tional networks for biomedical image segmen-tation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.2015:234-241.
[13]FANG Z,LIANG J,ZHOU J,et al.Anomaly Detection with Bidirectional Consistency in Videos[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(3):1079-1092.
[14]XU D,YAN Y,RICCI E,et al.Detecting anomalous events invideos by learning deep representations of appearance and motion[J].Computer Vision and Image Understanding,2017,156:117-127.
[15]YU G,WANG D,CAI X,et al.Cloze test helps:Effective video anomaly detection via learning to complete video events[C]//Proceedings of the ACM International Conference on Multimedia.2020:583-591.
[16]CHANG Y,TU Z,XIE W,et al.Clustering driven deep autoencoder for video anomaly detection[C]//Proceedings of the European Conference on Computer Vision.2020:329-345.
[17]HAO Y,LI J,WANG N,et al.Spatiotemporal consistency-enhanced network for video anomaly detection[J].Pattern Recognition,2022,121:108232.
[18]GEORGESCU M,BARBALAU A,IONESCU R,et al.Anomaly detection in video via self-supervised and multi-task learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:12742-12752.
[19]GRAVES A,MOHAMED A,HINTON G.Speech recognition with deep recurrent neural networks[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.2013:6645-6649.
[20]SHI X,CHEN Z,WANG H,et al.Convolutional LSTM Net-work:A machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems.2015:802-810.
[21]WESTON J,CHOPRA S,BORDES A.Memory networks[J].arXiv:1410.3916,2014.
[22]WANG X,DU Y,LIN S,et al.adVAE:a self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection[J].Knowledge-Based Systems,2019,190:105187.
[23]HAN T,XIE W A.Zisserman.Memory augmented dense predictive coding for video representation learning[C]//Proceedings of the European Conference on Computer Vision.2020:312-329.
[24]SUKHBAATAR S,SZLAM A,WESTON J,et al.End-to-end memory networks[J].arXiv:1503.08895,2015.
[25]MILLER A,FISCH A,DODGE J,et al.Key-value memory networks for directly reading documents[J].arXiv:1606.03126,2016.
[26]GONG D,LIU L,LE V,et al.Memorizing normality to detect anomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1705-1714.
[27]ZHOU Y,REN Q C,NIU H B.Research on training sample data selection methods[J].Computer Science,2020,47(11A):402-408.
[28]PLUTOWSKI M,WHITE H.Selecting concise training setsfrom clean data[J].IEEE Transactions on Neural Networks,1993,4(2):305-318
[29]WANG J,NESKOVIC P,COOPER L N.Training data selection for support vector machines[C]//International Conference on Natural Computation,2005:554-564.
[30]CORTES C,VAPNIK V.Support-vector networks[J].Machine learning,1995,20(3):273-297.
[31]TANG K,LIN M,MINKU F,et al.Selective negative correla-tion learning approach to incremental learning[J].Neurocomputing,2009,72(13/14/15):2796-2805.
[32]CONG Y,YUAN J,LIU J.Sparse reconstruction cost for abnormal event detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2011:3449-3456.
[33]MAHADEVAN V,LI W,BHALODIA V,et al.Anomaly detection in crowded scenes[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010:1975-1981.
[34]LU C,SHI J,AND JIA J.Abnormal event detection at 150 fps in matlab[C]//Proceedings of the IEEE International Conference on Computer Vision.2013:2720-2727.
[35]WANG Z,ZOU Y,ZHANG Z.Cluster Attention Contrast for Video Anomaly Detection[C]//Proceedings of the International Conference on Multimedia.2020:2463-2471.
[36]LI B,LEROUX S,SIMOENS P.Decoupled appearance and motion learning for efficient anomaly detection in surveillance video[J].Computer Vision and Image Understanding,2021,210:103249.
[37]ZHONG Y,CHEN X,JIANG J,et al.A cascade reconstruction model with generalization ability evaluation for anomaly detection in videos[J].Pattern Recognition,2022,122:108336.
[38]CHANG Y,TU Z,XIE W,et al.Video anomaly detection with spatio-temporal dissociation[J].Pattern Recognition,2022,122:108213.
[1] 叶瀚, 李欣, 孙海春.
结合门控机制的卷积网络实体缺失检测方法
Convolutional Network Entity Missing Detection Method Combined with Gated Mechanism
计算机科学, 2023, 50(5): 262-269. https://doi.org/10.11896/jsjkx.220400126
[2] 张仁斌, 左艺聪, 周泽林, 王龙, 崔宇航.
基于多模态生成对抗网络的多元时序数据异常检测
Multimodal Generative Adversarial Networks Based Multivariate Time Series Anomaly Detection
计算机科学, 2023, 50(5): 355-362. https://doi.org/10.11896/jsjkx.220400221
[3] 饶丹, 时宏伟.
基于深度聚类的航空交通流识别与异常检测研究
Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering
计算机科学, 2023, 50(3): 121-128. https://doi.org/10.11896/jsjkx.220100086
[4] 崔竞松, 张童桐, 郭迟, 郭文飞.
基于时延特征的网络设备异常检测
Network Equipment Anomaly Detection Based on Time Delay Feature
计算机科学, 2023, 50(3): 371-379. https://doi.org/10.11896/jsjkx.211200280
[5] 徐天慧, 郭强, 张彩明.
基于全变分比分隔距离的时序数据异常检测
Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance
计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174
[6] 李其烨, 邢红杰.
基于最大相关熵的KPCA异常检测方法
KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion
计算机科学, 2022, 49(8): 267-272. https://doi.org/10.11896/jsjkx.210700175
[7] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[8] 杜航原, 李铎, 王文剑.
一种面向电商网络的异常用户检测方法
Method for Abnormal Users Detection Oriented to E-commerce Network
计算机科学, 2022, 49(7): 170-178. https://doi.org/10.11896/jsjkx.210600092
[9] 陈景年.
一种适于多分类问题的支持向量机加速方法
Acceleration of SVM for Multi-class Classification
计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149
[10] 高志宇, 王天荆, 汪悦, 沈航, 白光伟.
基于生成对抗网络的5G网络流量预测方法
Traffic Prediction Method for 5G Network Based on Generative Adversarial Network
计算机科学, 2022, 49(4): 321-328. https://doi.org/10.11896/jsjkx.210300240
[11] 武玉坤, 李伟, 倪敏雅, 许志骋.
单类支持向量机融合深度自编码器的异常检测模型
Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder
计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142
[12] 冷佳旭, 谭明圮, 胡波, 高新波.
基于隐式视角转换的视频异常检测
Video Anomaly Detection Based on Implicit View Transformation
计算机科学, 2022, 49(2): 142-148. https://doi.org/10.11896/jsjkx.210900266
[13] 周士金, 邢红杰.
基于记忆增强 GAN 的异常检测
Memory-augmented GAN-based Anomaly Detection
计算机科学, 2022, 49(11A): 211000202-9. https://doi.org/10.11896/jsjkx.211000202
[14] 刘意, 毛莺池, 程杨堃, 高建, 王龙宝.
基于邻域一致性的异常检测序列集成方法
Locality and Consistency Based Sequential Ensemble Method for Outlier Detection
计算机科学, 2022, 49(1): 146-152. https://doi.org/10.11896/jsjkx.201000156
[15] 夏中, 向敏, 黄春梅.
基于CHBL的P2P视频监控网络分层管理机制
Hierarchical Management Mechanism of P2P Video Surveillance Network Based on CHBL
计算机科学, 2021, 48(9): 278-285. https://doi.org/10.11896/jsjkx.201200056
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!