计算机科学 ›› 2023, Vol. 50 ›› Issue (11): 23-31.doi: 10.11896/jsjkx.220800030

• 高性能计算 • 上一篇    下一篇

Cahn-Hilliard方程多重网格求解器收敛性分析

郭靖1, 齐德昱2   

  1. 1 华南理工大学软件学院 广州 510006
    2 广东外语外贸大学南国商学院数字化科学技术研究院 广州 510006
  • 收稿日期:2022-08-02 修回日期:2022-11-25 出版日期:2023-11-15 发布日期:2023-11-06
  • 通讯作者: 齐德昱 (qideyu@gmail.com)
  • 作者简介:(z7198185@gmail.com)
  • 基金资助:
    国家自然科学基金(61070015);广东省前沿与关键技术创新专项资金(重大科技专项)(2014B010110004);广东省普通高校工程技术研究中心项目(2022GCZX013)

Convergence Analysis of Multigrid Solver for Cahn-Hilliard Equation

GUO Jing1, QI Deyu2   

  1. 1 School of Software Engineering,South China University of Technology,Guangzhou 510006,China
    2 South China Business College,Guang Dong University of Foreign Studies,Guangzhou 510006,China
  • Received:2022-08-02 Revised:2022-11-25 Online:2023-11-15 Published:2023-11-06
  • About author:GUO Jing,born in 1986,Ph.D candidate.His main research interests include software development,high-performance computing and analysis.QI Deyu,born in 1959,Ph.D,professor,doctoral supervisor.His main research interests include the new generation of computer system structure,software development methods and software architecture,big data technology,CASE and software development environment,and tools,intelligent enhancement,intelligent control,computer system security,etc.
  • Supported by:
    National Natural Science Foundation of China(61070015),Guangdong Frontier and Key Technological Innovation Special Funds(Grant Scientific and Technological Project)(2014B010110004) and Funds of the University Engineering and Technology Research Center of Guangdong(2022GCZX013).

摘要: Cahn-Hilliard(CH)方程是相场模型中的一个基本的非线性方程,通常使用数值方法进行分析。在对CH方程进行数值离散后会得到一个非线性的方程组,全逼近格式(Full Approximation Storage,FAS)是求解这类非线性方程组的一个高效多重网格迭代格式。目前众多的求解CH方程主要关注数值格式的收敛性,而没有论证求解器的可靠性。文中给出了求解CH方程离散得到的非线性方程组的多重网格算法的收敛性证明,从理论上保证了计算过程的可靠性。针对CH方程的时间二阶全离散差分数值格式,利用快速子空间下降(Fast Subspace Descent,FASD)框架给出其FAS格式多重网格求解器的收敛常数估计。为了完成这一目标,首先将原本的差分问题转化为完全等价的有限元问题,再论证有限元问题来自一个凸泛函能量形式的极小化,然后验证能量形式及空间分解满足FASD框架假设,最终得到原多重网格算法的收敛系数估计。结果显示,在非线性情形下,CH方程中的参数ε对网格尺度添加了限制,太小的参数会导致数值计算过程不收敛。最后通过数值实验验证了收敛系数与方程参数及网格尺度的依赖关系。

关键词: 非线性多重网格, 收敛性分析, Cahn-Hilliard方程, 全逼近格式, 非线性问题

Abstract: The Cahn-Hilliard(CH) equation is a fundamental nonlinear equation in the phase field model and is usually analyzed using numerical methods.Following a numerical discretization,we get a nonlinear equations system.The full approximation scheme(FAS) is an efficient multigrid iterative scheme for solving such nonlinear equations.In the numerous articles on solving the CH equation,the main focus is on the convergence of the numerical format,without mentioning the stability of the solver.In this paper,the convergence property of the multigrid algorithm is established,which is from the nonlinear equation system obtained by solving the discrete CH equation,and the reliability of the calculation process is guaranteed theoretically.For the diffe-rence discrete numerical scheme of the CH equation,which is both second-order in spatial and time,we use the fast subspace descent method(FASD) framework to give the estimation of the convergence constant of its FAS scheme multigrid solver.First,we transform the original difference problem into a fully equivalent finite element problem.It demonstrates that the finite element problem comes from the minimization of convex functional energy.Then it is verified that the energy functional and the spatial decomposition satisfy the FASD framework assumption.Finally,the convergence coefficient estimate of the original multigrid algorithm is obtained.The results show that in the case of nonlinearity,the parameter ε in the CH equation imposes restrictions on the grid size,which will cause the numerical calculation process not to converge when it is too small.Finally,the spatial and temporal accuracy of the numerical format is verified by numerical experiment,and the dependence of the convergence coefficient on the equation parameters and grid-scale is analyzed.

Key words: Nonlinear multigrid, Convergence analysis, Cahn-Hilliard equation, Full approximation scheme, Nonlinear problem

中图分类号: 

  • TP301
[1]CAHN J W,HILLIARD J E.Free Energy of a Nonuniform System.I.Interfacial Free Energy[J].The Journal of Chemical Physics,1958,28(2):258-267.
[2]CAHN J W.Free Energy of a Nonuniform System.II.Thermodynamic Basis[J].The Journal of Chemical Physics,1959,30(5):1121-1124.
[3]ZHOU B,POWELL A C.Phase Field Simulations of Early Stage Structure Formation During Immersion Precipitation of Polymeric Membranes in 2D and 3D[J].Journal of Membrane Science,2006,268(2):150-164.
[4]GARCKE H,LAM K F,SITKA E,et al.A Cahn-Hilliard-Darcy Model for Tumour Growth with Chemotaxis and Active Transport[J].Mathematical Models and Methods in Applied Sciences,2016,26(6):1095-1148.
[5]QIAN T,WANG X P,SHENG P.A Variational Approach to Moving Contact Line Hydrodynamics[J].Journal of Fluid Mechanics,2006,564:333-360.
[6]BERTOZZI A L,ESEDOGLU S,GILLETTE A.Inpainting of Binary Images Using the Cahn-Hilliard Equation[J].IEEE Transactions on Image Processing,2006,16(1):285-291.
[7]LAM K F,WU H.Thermodynamically ConsistentNavier-Stokes-Cahn-Hilliard Models with Mass Transfer and Chemotaxis[J].European Journal of Applied Mathematics,2018,29(4):595-644.
[8]GUO J,WANG C,WISE S M,et al.An H2 Convergence of a Second-Order Convex-Splitting,Finite Difference Scheme for the Three-Dimensional Cahn-Hilliard Equation[J].Communications in Mathematical Sciences,2016,14:489-515.
[9]HU Z,WISE S,WANG C,et al.Stable and Efficient Finite-Difference Nonlinear-Multigrid Schemes for the Phase-Field Crystal Equation[J].Journal of Computational Physics,2009,228:5323-5339.
[10]WISE S M.Unconditionally Stable Finite Difference,Nonlinear Multigrid Simulation of the Cahn-Hilliard-Hele-Shaw System of Equations[J].Journal of Scientific Computing,2010,44:38-68.
[11]LEE C,JEONG D,YANG J,et al.Nonlinear Multigrid Implementation for the Two-Dimensional Cahn Equation[J].Mathematics,2020,8(1):97.
[12]REUSKEN A.Convergence of the Multilevel FullApproxima-tion Scheme Including the V-cycle[J].Numerische Mathematik,1988,53(6):663-686.
[13]HACKBUSCH W,REUSKEN A.On Global Multigrid Convergence for Nonlinear Problems[J].Vieweg+Teubner Verlag,1989,23:105-113.
[14]HACKBUSCH W,REUSKEN A.Analysis of a Damped Nonlinear Multilevel Method[J].Numerische Mathematik,1989,55(2):225-246.
[15]XIE D.New Parallel Iteration Methods,New Nonlinear Multigrid Analysis,and Application in Computational Chemistry[D].Houston:University of Houston,1995.
[16]SHAJDUROV V V.Multigrid Methods for Finite Elements[M].Netherlands:Springer,1996:542-543.
[17]REUSKEN A.Convergence of the Multigrid Full Approximation Scheme for a Class of Elliptic Mildly Nonlinear Boundary Value Problems[J].Numerische Mathematik,1987,52(3):251-277.
[18]HACKBUSCH W.Multi-grid Methods and Applications[M].Berlin:Springer-Verlag 1985.
[19]XIE H H,XIE M T,ZHANG N.An Efficient Multigrid Method for Semilinear Elliptic Equation[J].Journal on Numerical methods and computer applications,2019,40(2):143-160.
[20]TAI X C,XU J C.Global and Uniform Convergence of Subspace Correction Methods for some Convex Optimization Problems[J].Mathematics of Computation,2002(71):105-124.
[21]TAI X C,XU J.Subspace Correction Methods for Convex Opti-mization Problems[C]//Eleventh International Conference on Domain Decomposition Methods.1998.
[22]XU J.Iterative Methods by Space Decomposition and SubspaceCorrection[J].Siam Review,1992,34:581-613.
[23]CHEN L,HU X,WISE S M.Convergence Analysis of the Fast Subspace Descent Method for Convex Optimization Problems[J].Mathematics of Computation,2020,89(325):2249-2282.
[24]EYRE D.Unconditionally Gradient Stable Time Marching theCahn-Hilliard Equation[C]//Computational and Mathematical Models of Microstructural Evolution.Materials Research Society.1998:1686-1712.
[25]WISE S M,WANG C,LOWENGRUB J S.An Energy Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation[J].SIAM Journal of Numerical Analysis,2009,47:2269-2288.
[26]TROTTENBERG U,OOSTERLEE C W,SCHÜLLER A.Multigrid[M].New York:Academic Press,2005.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!