计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 235-241.doi: 10.11896/jsjkx.220800067
刘培刚1, 孙洁1, 杨超智1, 李宗民1,2
LIU Peigang1, SUN Jie1, YANG Chaozhi1, LI Zongmin1,2
摘要: 密集场景下个体尺度存在巨大差异,目标个体尺度不一导致人群计数精度不高。针对这一问题,提出了一种密集场景下基于多尺度特征聚合的人群计数方法。该方法研究不同特征层级对不同尺度个体的特征信息表示能力,通过层级连接充分获取多尺度特征;同时,提出了一个多尺度特征聚合模块,采用多列具有不同扩张率的空洞卷积,通过动态特征选择机制自动调整感受野,以有效提取不同尺度个体的特征。该方法能够在保留小尺度个体特征信息的基础上进一步扩大感受野,增强大尺度个体的检测能力,使其更好地适应人群个体的多尺度变化。在3个公共人群计数数据集上进行了实验,实验结果表明,所提模型在计数准确性上有了进一步的提高,其中在ShanghaiTech数据集Part_A上MAE为51.21,MSE为83.70。
中图分类号:
[1]DALAL N,TRIGGS B.Histograms of Oriented Gradients forHuman Detection [C]//IEEE Computer Society Conference on Computer Vision & Pattern Recognition.IEEE,2005. [2]ENZWEILER M,GAVRILA D M.Monocular Pedestrian Detection:Survey and Experiments[J].IEEE Trans on Pattern Ana-lysis & Machine Intelligence,2009,31:2179-2195. [3]LEE M H,CHUNG K H,CHOI G K,et al.Measurement of Sr-90 in Aqueous Samples Using Liquid Scintillation Counting with Full Spectrum DPM Method[J].Applied Radiation and Isotopes,2002,57(2):257-263. [4]MIN L,ZHANG Z,HUANG K,et al.Estimating the Number of People in Crowded Scenes by MID Based Foreground Segmentation and Head-shoulder Detection [C]//The 19th International Conference on Pattern Recognition.IEEE,2009. [5]DAVIES A C,JIA H Y,VELASTIN S A.Crowd MonitoringUsing Image Processing[J].Electronics & Communication Engineering Journal,1995,7(1):37-47. [6]MIN F,PEI X,LI X,et al.Fast Crowd Density Estimation with Convolutional Neural Networks[J].Engineering Applications of Artificial Intelligence,2015,43(aug.):81-88. [7]WANG C,HUA Z,LIANG Y,et al.Deep People Counting inExtremely Dense Crowds [C]//The 23rd ACM International Conference.ACM,2015. [8]ZHANG C,LI H,WANG X,et al.Cross-scene Crowd Counting Via Deep Convolutional Neural Networks [C]//IEEE Confe-rence on Computer Vision & Pattern Recognition.IEEE,2015:833-841. [9]ARTETA C,LEMPITSKY V,NOBLE J A,et al.InteractiveObject Counting [C]//European Conference on Computer Vision.Cham:Springer,2014. [10]PENG X,PENG Y X,TANG Q,et al.Crowd Counting Based on Single-column Multi-scale Convolutional Neural Network[J].Computer Science,2020,47(4):150-156. [11]PHAM V Q,KOZAKAYA T,YAMAGUCHI O,et al.COUNT Forest:Co-voting Uncertain Number of Targets Using Random Forest for Crowd Density Estimation [C]//2015 IEEE International Conference on ComputerVision(ICCV).IEEE,2015. [12]WALACH E,WOLF L.Learning to Count with CNN Boosting [C]//European Conference on Computer Vision.Cham:Sprin-ger,2016. [13]LI J Q,YAN H.Crowd Counting Method Based on Cross-co-lumn Features Fusion[J].Computer Science,2021,48(6):118-124. [14]ZHANG Y,ZHOU D,CHEN S,et al.Single-image CrowdCounting Via Multi-column Convolutional Neural Network [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2016. [15]SAM D B,SURYA S,BABU R V.Switching ConvolutionalNeural Network for Crowd Counting [C]//Computer Vision & Pattern Recognition.IEEE,2017:5744-5752. [16]SINDAGI V A,PATEL V M.Generating High-quality Crowd Density Maps Using Contextual Pyramid CNNs [C]//2017 IEEE International Conference on Computer Vision(ICCV).IEEE,2017. [17]HOSSAIN M,HOSSEINZADEH M,CHANDA O,et al.Crowd Counting Using Scale-aware Attention Networks [C]//2019 IEEE Winter Conferenceon Applications of Computer Vision(WACV).IEEE,2019. [18]ZHANG A,SHEN J,XIAO Z,et al.Relational Attention Network for Crowd Counting [C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2020. [19]JIANG X,ZHANG L,XU M,et al.Attention Scaling for Crowd Counting [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2020. [20]LI Y,ZHANG X,CHEN D.CSRNet:Dilated ConvolutionalNeural Networks for Understanding the Highly Congested Scenes [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2018. [21]LIU Y,SHI M,ZHAO Q,et al.Point in,Box out:BeyondCounting Persons in Crowds [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2019. [22]SONG Q,WANG C,JIANG Z,et al.Rethinking Counting andLocalization in Crowds:A Purely Point-based Framework[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2021:3345-3354, [23]JING S,CHEN C L,WANG X.Scene-independent Group Profiling in Crowd [C]//Computer Vision & Pattern Recognition.IEEE,2014. [24]ZHU F,WANG X G.Crowd Tracking by Group Structure Evolution[J].IEEE Trans on Circuits and Systems for Video Technology,2016,28(3):772-786. [25]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE Computer Society,2017:2117-2125. [26]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Net-works for Large-scale Image Recognition[J/OL].Computer Science,2014.https://doi.org/10.48550/arXiv.1409.1556. [27]WU H,WANG W,ZHONG J,et al.SCS-Net:A Scale and Con-text Sensitive Network for Retinal Vessel Segmentation[J].Medical Image Analysis,2021,70(10):102025. [28]IDREES H,SALEEMI I,SHAH M.Multi-source Multi-scale Counting in Dense Crowd Images [C]//Computer Vision and Pattern Recognition.IEEE,2013:2547-2554. [29]DEB D,VENTURA J.An Aggregated Multicolumn DilatedConvolution Network for Perspective-free Counting[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE,2013:308-317. |
|