计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 269-277.doi: 10.11896/jsjkx.220800094
安浩嘉1, 史殿习1,2,3, 李林1, 孙亦璇1, 杨绍武1, 陈旭灿1,2
AN Haojia1, SHI Dianxi1,2,3, LI lin1, SUN Yixuan1, YANG Shaowu1, CHEN Xucan1,2
摘要: 作为诸多移动机器人应用的基础,完全覆盖旨在为机器人规划出一条访问目标区域所有点且耗时最短的无碰撞路径。此类覆盖应用中,利用多台机器人协同覆盖可以有效缩短覆盖时间并提升系统的鲁棒性,同时也增加了算法设计复杂度和机器人协同管理难度。因此,文中研究了已知环境下的多机器人覆盖问题,该问题已被证明是一个NP难题。文中提出了一种启发式的基于多层次图划分的多机器人任务分配方法(Multi-robot Task Assignment Based on Multi-level Graph Partitioning,TAMP),该方法包含一种粗化任务分配算法和一种精细任务分配算法。粗化任务分配算法采用分层粗化的方法,通过图的极大匹配实现了节点融合以降低图的规模,并基于均匀种子的图增长方式获取了一个接近均衡的初始任务分配结果,提高算法效率;精细任务分配算法在粗化任务分配算法的基础上,提出了一种基于边界节点交换的Lazy&Lock策略,用于实现任务细分,提高求解精度。文中在不同规模的随机图和真实世界的治安巡逻场景下进行了仿真验证。仿真结果表明,相比经典的任务分配方法,TAMP方法将可求解的最大计算规模从千级扩大到百万级,小规模图(3 000以内)的计算速度加快了20倍,距离最优解偏差均优于经典方法;能够在60 s内解决大规模图(3 000~1 000 000)的任务分配问题,同时将距离最优解偏差控制在0.3%以内。
中图分类号:
[1]SHEN Z,SONG J,MITTAL K,et al.CT-CPP:Coverage Path Planning for 3D Terrain Reconstruction Using Dynamic Cove-rage Trees[J].IEEE Robotics and Automation Letters,2022,7(1):135-142. [2]CARBONE C,ALBANI D,MAGISTRI F,et al.Monitoring and mapping of crop fields with UAV swarms based on information gain[C]//International Symposium Distributed Autonomous Robotic Systems.Cham:Springer,2021:306-319. [3]CABREIRA T M,DI FRANCO C,FERREIRA P R,et al.Ener-gy-aware spiral coverage path planning for uav photogrammetric applications[J].IEEE Robotics and Automation Letters,2018,3(4):3662-3668. [4]HAYAT S,YANMAZ E,BROWN T X,et al.Multi-objectiveUAV path planning for search and rescue[C]//IEEE International Conference on Robotics and Automation.IEEE,2017:5569-5574. [5]GALCERAN E,CARRERAS M.A surveyon coverage pathplanning for robotics[J].Robotics and Autonomous Systems,2013,61(12):1258-1276. [6]REKLEITIS I,NEW A P,RANKIN E S,et al.Efficient bous-trophedon multi-robot coverage:an algorithmic approach[J].Annals of Mathematics and Artificial Intelligence,2008,52(2):109-142. [7]MATIĆD.A mixed integer linear programming model and va-riable neighborhood search for maximally balanced connected partition problem[J].Applied Mathematics and Computation,2014,237:85-97. [8]ZHOU X,WANG H,DING B,et al.Balanced connected task al-locations for multi-robot systems:An exact flow-based integer program and an approximate tree-based genetic algorithm[J].Expert Systems with Applications,2019,116:10-20. [9]MIYAZAWA F K,MOURA P F S,OTA M J,et al.Partitioning a graph into balanced connected classes:Formulations,separation and experiments[J].European Journal of Operational Research,2021,293(3):826-836. [10]KRATICA J.Solving the maximally balanced connected partition problem in graphs by usinggenetic algorithm[J].Computing and Informatics,2008,27(3):341-354. [11]ZHOU X,WANG H,DING B.How many robots are enough:a multi-objective genetic algorithm for the single-objective time-limited complete coverage problem[C]//IEEE International Conference on Robotics and Automation(ICRA).IEEE,2018:2380-2387. [12]AGMON N,HAZON N,KAMINKA G A.Constructing span-ning trees for efficient multi-robot coverage[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation.IEEE,2006:1698-1703. [13]KARAPETYAN N,BENSON K,MCKINNEY C,et al.Efficient multi-robot coverage of a known environment[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).IEEE,2017:1846-1852. [14]AZPÚRUA H,FREITAS G M,MACHARET D G,et al.Multi-robot coverage path planning using hexagonal segmentation for geophysical surveys[J].Robotica,2018,36(8):1144-1166. [15]CHOSET H.Coverage for robotics-a survey of recent results[J].Annals of Mathematics and Artificial Intelligence,2001,31(1):113-126. [16]SHIVASHANKAR V,JAIN R,KUTER U,et al.Real-timeplanning for covering an initially-unknown spatial environment[C]//Twenty-Fourth International FLAIRS Conference.2011. [17]HAZON N,KAMINKA G A.Redundancy,efficiency and ro-bustness in multi-robot coverage[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation.IEEE,2005:735-741. [18]FREDERICKSON G N,ZHOU S.Optimal parametric search for path and tree partitioning[J].arXiv:1711.00599,2017. [19]CHEN G,CHEN Y,CHEN Z Z,et al.Approximation algo-rithms for the maximally balanced connected graph tripartition problem[J].Journal of Combinatorial Optimization,2022, 44(3):1753-1773. [20]CHEN Y,CHEN Z Z,LIN G,et al.Approximation algorithms for maximally balanced connected graph partition[J].Algorithmica,2021,83(12):3715-3740. [21]WANG S H.Graph Theory,2nd ed[M].Science Press,2009. [22]KARYPIS G,KUMAR V.A fast and high quality multilevelscheme for partitioning irregular graphs[J].SIAM Journal on scientific Computing,1998,20(1):359-392. |
|