计算机科学 ›› 2022, Vol. 49 ›› Issue (12): 17-21.doi: 10.11896/jsjkx.220700131

• 联邦学习* 上一篇    下一篇

去中心化云存储网络的存储任务分配算法

申圳, 赵成贵   

  1. 云南财经大学信息学院 昆明650221
  • 收稿日期:2022-07-13 修回日期:2022-09-30 发布日期:2022-12-14
  • 通讯作者: 赵成贵(zcgui@126.com)
  • 作者简介:(stephen_zhen123@163.com)
  • 基金资助:
    国家自然科学基金(61562089)

Storage Task Allocation Algorithm in Decentralized Cloud Storage Network

SHEN Zhen, ZHAO Cheng-gui   

  1. School of Information Science,Yunnan University of Finance and Economics,Kunming 650221,China
  • Received:2022-07-13 Revised:2022-09-30 Published:2022-12-14
  • About author:SHEN Zhen,born in 1993,postgra-duate,is a member of China Computer Federation.His main research interests include blockchain,SDN/NFV,federated learning and so on.ZHAO Cheng-gui,born in 1974,Ph.D,professor.His main research interests include communication network and computer system architecture,distributed systems,algebraic graph theory and its applications,blockchain,federated learning and so on.
  • Supported by:
    National Natural Science Foundation of China(61562089).

摘要: 针对联邦学习客户端数据集的存储任务分配问题构建新型模型,为保证去中心化云存储网络的负载均衡,缩短存储数据上传/恢复时间,减少客户端存储总花费,提出了一种考虑客户端需求和全局负载的数据存储任务分配算法——URGL_allo(Allocation Based on User Requirements and Global Load)算法。在节点分配阶段考虑全局负载、拓扑属性及客户端关注的存储价格和数据恢复时间等节点资源,结合万有引力定律定义新的节点排序方法,选择最佳存储任务分配节点。在链路分配阶段,使用Dijkstra算法计算以客户端节点为中心到网络中其他节点的最短路径,并选择两节点间最短路径集合中带宽值最大的路径进行分配。仿真结果表明,相比基于随机策略的分配算法(Random_allo),所提算法的负载均衡指数、客户端存储总花费分别降低了41.9%,5%,并且与基于链路带宽的贪婪算法的数据恢复时间相差不大,都稳定维持在(0,2]之间,是Random_allo算法的1/20,在全局负载和服务质量上的综合表现优于对比算法。

关键词: 联邦学习, 去中心化云存储, 存储任务分配, 全局负载, 客户端需求, 节点排序

Abstract: Constructing a novel model for the storage task allocation problem of federated learning client datasets,to ensure load balancing of decentralized cloud storage networks,shorten the storage data uploading and recovery time,and reduce the total client storage cost,a data storage task allocation algorithm——URGL_allo (allocation based on user requirements and global load) that considers client requirements and global load is proposed.In the node allocation phase,node resources such as global load,topological attributes,storage price and data recovery time concerned by clients are considered,and a new node ranking method is defined in conjunction with the law of gravity to select the best storage task allocation node.In the link allocation stage,the shortest path calculation is performed using Dijkstra’s algorithm for the client node as the center to other nodes in the network,and the path with the largest bandwidth value in the set of shortest paths between two nodes is selected for allocation.Simulation results show that the proposed algorithm reduces the load balancing index and the total client storage cost by 41.9% and 5%,respectively,compared with the random policy-based allocation algorithm (Random_allo),and the data recovery time is not much different from that of the link bandwidth-based greedy algorithm,both of which are stably maintained between (0,2],which is 1/20 of Random_allo.The combined performance of global load and service quality is better than that of the comparison algorithm.

Key words: Federated learning, Decentralized cloud storage, Storage task allocation, Global load, Client requirements, Node sequencing

中图分类号: 

  • TP311
[1]ZHANG C,XIE Y,BAI H,et al.A survey on federated learning [J].Knowledge-Based Systems,2021,216:106775.
[2]XIAO T,CUI T,ISLAM S R,et al.Joint content placement and storage allocation based on federated learning in F-RANs [J].Sensors,2020,21:215.
[3]LEMAÎTRE G,NOGUEIRA F,ARIDAS C K.Imbalanced-learn:A python toolbox to tackle the curse of imbalanced datasets in machine learning [J].The Journal of Machine Learning Research,2017,18:559-563.
[4]JUBA B,LE H S.Precision-recall versus accuracy and the role of large data sets[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:4039-4048.
[5]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tionefficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282.
[6]WEBVIEW-LAB.Decentralized storage,the disruptor of traditional cloud storage [EB/OL].(2022-04-15) [2022-08-26].http://www.yitb.com/article-19160.
[7]CANGIR O F,CANKUR O,OZSOY A.A taxonomy for Blockchain based distributed storage technologies [J].Information Processing & Management,2021,58:102627.
[8]MAIDSAFE.NET.Safe network [EB/OL].(2014-03-26) [2022-08-26].https://github.com/maidsafe/Whitepapers/blob/master/Project-Safe.md.
[9]VAKILINIA I,VAKILINIA S,BADSHA S,et al.Pooling ap-proach for task allocation in the blockchain based decentralized storage network[C]//2019 15th International Conference on Network and Service Management(CNSM).IEEE,2019:1-6.
[10]YUAN N H.Research on user-oriented software defined cloud storage resource allocation strategy[D].Beijing:Beijing University of Posts and Telecommunications,2017.
[11]BENISI N Z,AMINIAN M,JAVADI B Blockchain-based decentralized storage networks:A survey [J].Journal of Network and Computer Applications,2020,162:102656.
[12]PROTOCOL-LABS.Filecoin:A dicentralized storage networks [EB/OL].[2022-07-06].https://ipfs.netlify.app/tutorial/whitepapera.html.
[13]FU C H.The frame of decentralized storage system based on distributed ledger [D].Chengdu:University of Electronic Science and Technology of China,2020.
[14]STORJ LABS I.Storj:A Decentralized Cloud Storage Network Framework(Version 3.0) [EB/OL].(2018-10-30) [2022-07-06].https://www.storj.io/whitepaper.
[15]CONG L,LI R,WANG H,et al.Distributed data storage allocation scheme for the industrial internet of things[J].Electric Power Information and Communication Technology,2020,18(7):52-57.
[16]WU S,YIN H,CAO H,et al.Node ranking strategy in virtual network embedding:An overview [J].China Communications,2021,18:114-136.
[17]CAO H T.Research on virtual network embedding algorithm in network virtualization environment [D].Nanjing:Nanjing University of Posts and Telecommunications,2020.
[18]GONG L,WEN Y,ZHU Z,et al.Toward profit-seeking virtual network embedding algorithm via global resource capacity[C]//IEEE INFOCOM 2014-IEEE Conference on Computer Communications.IEEE,2014:1-9.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[4] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于DBSCAN聚类的集群联邦学习方法
Clustered Federated Learning Methods Based on DBSCAN Clustering
计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059
[5] 闫萌, 林英, 聂志深, 曹一凡, 皮欢, 张兰.
一种提高联邦学习模型鲁棒性的训练方法
Training Method to Improve Robustness of Federated Learning
计算机科学, 2022, 49(6A): 496-501. https://doi.org/10.11896/jsjkx.210400298
[6] 杜辉, 李卓, 陈昕.
基于在线双边拍卖的分层联邦学习激励机制
Incentive Mechanism for Hierarchical Federated Learning Based on Online Double Auction
计算机科学, 2022, 49(3): 23-30. https://doi.org/10.11896/jsjkx.210800051
[7] 王鑫, 周泽宝, 余芸, 陈禹旭, 任昊文, 蒋一波, 孙凌云.
一种面向电能量数据的联邦学习可靠性激励机制
Reliable Incentive Mechanism for Federated Learning of Electric Metering Data
计算机科学, 2022, 49(3): 31-38. https://doi.org/10.11896/jsjkx.210700195
[8] 赵罗成, 屈志昊, 谢在鹏.
面向多层无线边缘环境下的联邦学习通信优化的研究
Study on Communication Optimization of Federated Learning in Multi-layer Wireless Edge Environment
计算机科学, 2022, 49(3): 39-45. https://doi.org/10.11896/jsjkx.210800054
[9] 邹赛兰, 李卓, 陈昕.
面向分层联邦学习的传输优化研究
Study on Transmission Optimization for Hierarchical Federated Learning
计算机科学, 2022, 49(12): 5-16. https://doi.org/10.11896/jsjkx.220300204
[10] 杨鸿健, 胡学先, 李可佳, 徐阳, 魏江宏.
隐私保护的非线性联邦支持向量机研究
Study on Privacy-preserving Nonlinear Federated Support Vector Machines
计算机科学, 2022, 49(12): 22-32. https://doi.org/10.11896/jsjkx.220500240
[11] 瞿祥谋, 吴映波, 蒋晓玲.
一种非独立同分布问题下的联邦数据增强算法
Federated Data Augmentation Algorithm for Non-independent and Identical Distributed Data
计算机科学, 2022, 49(12): 33-39. https://doi.org/10.11896/jsjkx.220300031
[12] 郭桂娟, 田晖, 王田, 贾维嘉.
一种基于背景优化的高效联邦学习方案
Efficient Federated Learning Scheme Based on Background Optimization
计算机科学, 2022, 49(12): 40-45. https://doi.org/10.11896/jsjkx.220600237
[13] 梁文雅, 刘波, 林伟伟, 严远超.
联邦学习激励机制研究综述
Survey of Incentive Mechanism for Federated Learning
计算机科学, 2022, 49(12): 46-52. https://doi.org/10.11896/jsjkx.220500272
[14] 程帆, 王瑞锦, 张凤荔.
边缘场景下动态权重的联邦学习优化方法
Federated Learning Optimization Method for Dynamic Weights in Edge Scenarios
计算机科学, 2022, 49(12): 53-58. https://doi.org/10.11896/jsjkx.220700136
[15] 吴赟寒, 白光伟, 沈航.
基于联邦学习的车联网多维资源动态分配算法
Multi-dimensional Resource Dynamic Allocation Algorithm for Internet of Vehicles Based on Federated Learning
计算机科学, 2022, 49(12): 59-65. https://doi.org/10.11896/jsjkx.211000123
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!