计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 220800199-11.doi: 10.11896/jsjkx.220800199
韩志耕1,2, 范远哲1,2, 陈耿3, 周婷1,2
HAN Zhigeng1,2, FAN Yuanzhe1,2, CHEN Geng3, ZHOU Ting1,2
摘要: 传统协同过滤推荐通常基于数据是静态的假设,在数据稀疏时存在推荐精度低下的问题。为解决该问题,一些研究尝试向推荐策略中添加有关用户兴趣变化、推荐能力可信度等补充信息,但对误导或干扰推荐的恶意用户兴趣策略变化和推荐能力波动等异常情况欠缺考虑,系统抗攻击性、推荐稳定性与可信性均难以得到保证。通过引入兴趣时效相似度和推荐信度重估两个概念,提出了一种基于时效近邻可信选取策略的协同过滤推荐方法。该方法充分考虑了影响目标用户近邻筛选质量的用户兴趣异常变化和推荐能力波动两个关键因素,构建了包含时效近邻筛选、可信近邻选取和评分预测3个策略的推荐流程。在MovieLens数据集和亚马逊video game数据集上,利用平均绝对误差,平均预测增量,攻击用户查准率、查全率和调和平均等评估指标,对所提策略与其他6种基准策略进行了比较。结果显示,新策略在推荐精度、抗攻击力和攻击者识别力上均有明显的性能提升。
中图分类号:
[1]PATEL K,PATEL H B.A state-of-the-art survey on recom-mendation system and prospective extensions[J].Computers and Electronics in Agriculture,2020,178:105779. [2]UMAIR J,KAMRAN S,HAMEED I A,et al.A Review of content-based and context-based recommendation systems[J].International Journal of Emerging Technologies in Learning(iJET),2021,16(3):274-306. [3]WANG J,LAN Y X,WU C Y.Survey of recommendation based on collaborative filtering[C]//3rd International Conference on Electrical,Mechanical and Computer Engineering.Bristol:Journal of Physics:Conference Series,2019:012078. [4]WU Z,LI C S,CAO J,et al.On scalability of association-rule-based recommendation:a unified distributed-computing framework[J].ACM Transactions on the Web(TWEB),2020,14(3):1-21. [5]ZIHAYAT M,AYANSO A,ZHAO X,et al.A utility-basednews recommendation system[J],Decision Support Systems,2019,117:14-27. [6]TARUS J K,NIU Z D,MUSTAFA G.Knowledge-based recommendation:a review of ontology-based recommender systems for e-learning[J].Artificial Intelligence Review,2018,50:21-48. [7]CAI X JN,HU M,ZHAO P,et al.A hybrid recommendation system with many-objective evolutionary algorithm[J].Expert Systems with Applications,2020,159:113648. [8]VINAGRE J,JORGE A M,GAMA J.An overview on the exploitation of time in collaborative filtering[J].WIREs Data Mi-ning and Knowledge Discovery,2015,5(5):195-215. [9]ZHAO J Y,ZHUANG F Z,AO X,et al.Survey of collaborative filtering recommender systems[J].Journal of Cyber Security,2021,6(5):17-34. [10]LIU X J.An improved clustering-based collaborative filteringrecommendation algorithm[J].Cluster Computing,2017,20(2):1281-1288. [11]DONG C L,KE X S.Study on collaborative filtering algorithm based on user interest change and comment[J].Computer Science,2018,45(3):213-217,246. [12]XU G X,TANG Z J,MA C,et al.A collaborative filtering re-commendation algorithm based on userconfidence and time context[J].Journal of Electrical and Computer Engineering,2019,2019:1-12. [13]LI D,WANG C,LI L,et al.Collaborative filtering algorithmwith social information and dynamic time windows[J].Applied Intelligence,2022,52:5261-5272. [14]CHEN T,ZHU Q,ZHOU M X,et al.Trust-based recommenda-tion algorithm in social network[J].Journal of Software,2017,28(3):721-731. [15]WANG W,CHEN J Y,WANG J Z,et al.Trust-enhanced collaborative filtering for personalized pointof interests recommendation[J].IEEE Transactions on Industrial Informatics,2020,16(9):6124-6132. [16]WANG F,ZHU H B,SRIVASTAVA G,et al.Robust collaborative filtering recommendation with user-item-trust records[J].IEEE Transactions on Computational Social Systems,2022,9(4):986-996. [17]CAI X J,TAN W A.Improved collaborative filtering algorithm combining similarity and trust[J].Computer Science,2022,49(S1):238-241. [18] JIA D Y,ZHANG F Z.A collaborative filtering recommendation algorithm based on double neighbor choosing strategy[J].Journal of Computer Research and Development,2013,50(5):1076-1084. [19]REZAIMEHR F,DADKHAH C.A survey of attack detectionapproaches in collaborative filtering recommender systems[J].Artificial Intelligence Review,2020,54:2011-2066. [20]SARANYA K G,SADASIVAM G S,CHANDRALEKHA M.Performance comparison of different similarity measures for collaborative filtering technique[J].Indian Journal of Science and Technology,2016,9(29):1-8. [21]HAN Z G,FENG X,CHEN G.SDN based e-mail repudiationsource restraining method[J].Journal on Communications,2016,37(9):55-67. [22]O’DONOVAN J,SMYTH B.Trust in recommender systems[C]//Proceedings of the 10th International Conference on Intelligent User Interfaces(IUI’05).New York:ACM,2005:167-174. |
|