计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 48-54.doi: 10.11896/jsjkx.210700109

• 数据库&大数据&数据科学* 上一篇    下一篇

基于矢量量化编码的协同过滤推荐方法

王冠宇, 钟婷, 冯宇, 周帆   

  1. 电子科技大学信息与软件工程学院 成都 610054
  • 收稿日期:2021-07-12 修回日期:2021-08-02 出版日期:2022-09-15 发布日期:2022-09-09
  • 通讯作者: 周帆(fan.zhou@uestc.edu.cn)
  • 作者简介:(wgy05001@gmail.com)
  • 基金资助:
    国家自然科学基金(62072077,62176043);国家科技支撑计划(2019YFB1406202);四川省科技计划(2020GFW068,2020ZHCG0058,2021YFQ0007,2020YFG0053)

Collaborative Filtering Recommendation Method Based on Vector Quantization Coding

WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan   

  1. School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China
  • Received:2021-07-12 Revised:2021-08-02 Online:2022-09-15 Published:2022-09-09
  • About author:WANG Guan-yu,born in 1998,postgra-duate.His main research interests include deep learning and data mining.
    ZHOU Fan,born in 1981,Ph.D,asso-ciate professor,is a member of China Computer Federation.His main research interests include machine lear-ning,spatio-temporal data mining,data mining and knowledge discovery.
  • Supported by:
    National Natural Science Foundation of China(62072077,62176043),National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2019YFB1406202)and Sichuan Science and Technology Program(2020GFW068,2020ZHCG0058,2021YFQ0007,2020YFG0053).

摘要: 随着互联网的高速发展,海量数据涌现,使得推荐系统成为计算机科学领域的研究热点。变分自编码器已经被成功应用于协同过滤方法的设计中,并取得了出色的推荐效果。然而,以往基于变分自编码器的推荐模型存在一些问题,如对隐变量先验分布的约束以及“后验失效”等,这些问题降低了推荐模型的性能。为了解决这一问题,使变分自编码器模型更加适用于推荐任务,提出了一种基于矢量量化编码的协同过滤推荐方法。该方法采用离散的矢量编码代替变分自编码器从隐变量分布中直接取样获得编码,从观测数据中学习到一个离散的潜在表示,提高了编码的表示能力。在多个公开数据集上的性能评测结果显示,与现有方法相比,所提方法能够有效提升推荐性能。

关键词: 推荐系统, 协同过滤, 矢量量化编码, 变分自编码器

Abstract: With the rapid development of the Internet,the emergence of massive data makes recommender system become a research hotspot in the field of computer science.Variational autoencoders(VAE) have been successfully applied to the design of collaborative filtering methods and achieved excellent recommendation results. However,there are some defects in the previous VAE-based models,such as the problems of prior constraint and the “posterior collapse”,which essentially reduce their recommendation performance.To address this issue while enabling the latent variable model more suitable for the recommendation task,a novel collaborative filtering recommendation model based on latent vector quantization is proposed in this paper.By encoding the discrete vectors instead of directly sampling from the distribution of latent variables,our method can learn discrete representations that are consistent with the observed data,which greatly improves the capability of latent vector encoding and the learning ability of the model.Extensive evaluations conducted on three benchmark datasets demonstrate the effectiveness of the proposed model.Our model can significantly improve the recommendation performance compared with existing state-of-the-art methods while learning more expressive latent representations.

Key words: Recommender system, Collaborative filtering, Vector quantization coding, Variational autoencoder

中图分类号: 

  • TP183
[1]GOPALAN P,HOFMAN J M,BLEI D M.Scalable Recommendation with Hierarchical Poisson Factorization[C]//UAI.2015:326-335.
[2]HU Y,KOREN Y,VOLINSKY C.Collaborative filtering forimplicit feedback datasets[C]//2008 Eighth IEEE International Conference on Data Mining.IEEE,2008:263-272.
[3]MNIH A,SALAKHUTDINOV R R.Probabilistic matrix fac-torization[J].Advances in Neural Information Processing Systems,2007,20:1257-1264.
[4]LIANG D,ALTOSAAR J,CHARLIN L,et al.Factorizationmeets the item embedding:Regularizing matrix factorization with item co-occurrence[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:59-66.
[5]WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining.2016:153-162.
[6]ELAHI E,WANG W,RAY D,et al.Variational low rank multinomials for collaborative filtering with side-information[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:340-347.
[7]LI X,SHE J.Collaborative variational autoencoder for recommender systems[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:305-314.
[8]SACHDEVA N,MANCO G,RITACCO E,et al.Sequentialvariational autoencoders for collaborative filtering[C]//Procee-dings of the Twelfth ACM International Conference on Web Search and Data Mining.2019:600-608.
[9]WANG Z,CHEN C,ZHANG K,et al.Variational recurrentmodel for session-based recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:1839-1842.
[10]LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Varia-tional autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference.2018:689-698.
[11]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[12]KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013.
[13]SHENBIN I,ALEKSEEV A,TUTUBALINA E,et al.Recvae:A new variational autoencoder for top-n recommendations with implicit feedback[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.2020:528-536.
[14]LUCAS J,TUCKER G,GROSSE R,et al.Don't blame the Elbo! a linear Vae perspective on posterior collapse[J].arXiv:1911.02469,2019.
[15]TRAN D,BLEI D M,AIROLDI E M.Copula variational infe-rence[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2.2015:3564-3572.
[16]DINH L,SOHL-DICKSTEIN J,BENGIO S.Density estimation using real nvp[J].arXiv:1605.08803,2016.
[17]REZENDE D,MOHAMED S.Variational inference with normalizing flows[C]//International Conference on Machine Learning.PMLR,2015:1530-1538.
[18]OORD A,VINYALS O,KAVUKCUOGLU K.Neural discrete representation learning[J].arXiv:1711.00937,2017.
[19]OORD A,KALCHBRENNER N,VINYALS O,et al.Condi-tional image generation with PixelCNN decoders[C]//Procee-dings of the 30th International Conference on Neural Information Processing Systems.2016:4797-4805.
[20]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//ICLR(Poster).2015.
[21]NING X,KARYPIS G.Slim:Sparse linear methods for top-n recommender systems[C]//2011 IEEE 11th International Conference on Data Mining.IEEE,2011:497-506.
[22]EBESU T,SHEN B,FANG Y.Collaborative memory network for recommendation systems[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:515-524.
[23]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174.
[24]LI X,CHIN J Y,CHEN Y,et al.Sinkhorn Collaborative Filtering[C]//Proceedings of the Web Conference 2021.2021:582-592.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[3] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[4] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[5] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[6] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[7] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[8] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[9] 何亦琛, 毛宜军, 谢贤芬, 古万荣.
基于点割集图分割的矩阵变换与分解的推荐算法
Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation
计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159
[10] 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄.
基于遗憾探索的竞争网络强化学习智能推荐方法研究
Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration
计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226
[11] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[12] 熊中敏, 舒贵文, 郭怀宇.
融合用户偏好的图神经网络推荐模型
Graph Neural Network Recommendation Model Integrating User Preferences
计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276
[13] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[14] 陈壮, 邹海涛, 郑尚, 于化龙, 高尚.
基于用户覆盖及评分差异的多样性推荐算法
Diversity Recommendation Algorithm Based on User Coverage and Rating Differences
计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263
[15] 唐雨潇, 王斌君.
基于深度生成模型的人脸编辑研究进展
Research Progress of Face Editing Based on Deep Generative Model
计算机科学, 2022, 49(2): 51-61. https://doi.org/10.11896/jsjkx.210400108
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!