计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 48-54.doi: 10.11896/jsjkx.210700109
王冠宇, 钟婷, 冯宇, 周帆
WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan
摘要: 随着互联网的高速发展,海量数据涌现,使得推荐系统成为计算机科学领域的研究热点。变分自编码器已经被成功应用于协同过滤方法的设计中,并取得了出色的推荐效果。然而,以往基于变分自编码器的推荐模型存在一些问题,如对隐变量先验分布的约束以及“后验失效”等,这些问题降低了推荐模型的性能。为了解决这一问题,使变分自编码器模型更加适用于推荐任务,提出了一种基于矢量量化编码的协同过滤推荐方法。该方法采用离散的矢量编码代替变分自编码器从隐变量分布中直接取样获得编码,从观测数据中学习到一个离散的潜在表示,提高了编码的表示能力。在多个公开数据集上的性能评测结果显示,与现有方法相比,所提方法能够有效提升推荐性能。
中图分类号:
[1]GOPALAN P,HOFMAN J M,BLEI D M.Scalable Recommendation with Hierarchical Poisson Factorization[C]//UAI.2015:326-335. [2]HU Y,KOREN Y,VOLINSKY C.Collaborative filtering forimplicit feedback datasets[C]//2008 Eighth IEEE International Conference on Data Mining.IEEE,2008:263-272. [3]MNIH A,SALAKHUTDINOV R R.Probabilistic matrix fac-torization[J].Advances in Neural Information Processing Systems,2007,20:1257-1264. [4]LIANG D,ALTOSAAR J,CHARLIN L,et al.Factorizationmeets the item embedding:Regularizing matrix factorization with item co-occurrence[C]//Proceedings of the 10th ACM Conference on Recommender Systems.2016:59-66. [5]WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining.2016:153-162. [6]ELAHI E,WANG W,RAY D,et al.Variational low rank multinomials for collaborative filtering with side-information[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:340-347. [7]LI X,SHE J.Collaborative variational autoencoder for recommender systems[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:305-314. [8]SACHDEVA N,MANCO G,RITACCO E,et al.Sequentialvariational autoencoders for collaborative filtering[C]//Procee-dings of the Twelfth ACM International Conference on Web Search and Data Mining.2019:600-608. [9]WANG Z,CHEN C,ZHANG K,et al.Variational recurrentmodel for session-based recommendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:1839-1842. [10]LIANG D,KRISHNAN R G,HOFFMAN M D,et al.Varia-tional autoencoders for collaborative filtering[C]//Proceedings of the 2018 World Wide Web Conference.2018:689-698. [11]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [12]KINGMA D P,WELLING M.Auto-encoding variational bayes[J].arXiv:1312.6114,2013. [13]SHENBIN I,ALEKSEEV A,TUTUBALINA E,et al.Recvae:A new variational autoencoder for top-n recommendations with implicit feedback[C]//Proceedings of the 13th International Conference on Web Search and Data Mining.2020:528-536. [14]LUCAS J,TUCKER G,GROSSE R,et al.Don't blame the Elbo! a linear Vae perspective on posterior collapse[J].arXiv:1911.02469,2019. [15]TRAN D,BLEI D M,AIROLDI E M.Copula variational infe-rence[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2.2015:3564-3572. [16]DINH L,SOHL-DICKSTEIN J,BENGIO S.Density estimation using real nvp[J].arXiv:1605.08803,2016. [17]REZENDE D,MOHAMED S.Variational inference with normalizing flows[C]//International Conference on Machine Learning.PMLR,2015:1530-1538. [18]OORD A,VINYALS O,KAVUKCUOGLU K.Neural discrete representation learning[J].arXiv:1711.00937,2017. [19]OORD A,KALCHBRENNER N,VINYALS O,et al.Condi-tional image generation with PixelCNN decoders[C]//Procee-dings of the 30th International Conference on Neural Information Processing Systems.2016:4797-4805. [20]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//ICLR(Poster).2015. [21]NING X,KARYPIS G.Slim:Sparse linear methods for top-n recommender systems[C]//2011 IEEE 11th International Conference on Data Mining.IEEE,2011:497-506. [22]EBESU T,SHEN B,FANG Y.Collaborative memory network for recommendation systems[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:515-524. [23]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [24]LI X,CHIN J Y,CHEN Y,et al.Sinkhorn Collaborative Filtering[C]//Proceedings of the Web Conference 2021.2021:582-592. |
[1] | 程章桃, 钟婷, 张晟铭, 周帆. 基于图学习的推荐系统研究综述 Survey of Recommender Systems Based on Graph Learning 计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072 |
[2] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[3] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[4] | 帅剑波, 王金策, 黄飞虎, 彭舰. 基于神经架构搜索的点击率预测模型 Click-Through Rate Prediction Model Based on Neural Architecture Search 计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009 |
[5] | 齐秀秀, 王佳昊, 李文雄, 周帆. 基于概率元学习的矩阵补全预测融合算法 Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning 计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126 |
[6] | 孙晓寒, 张莉. 基于评分区域子空间的协同过滤推荐算法 Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace 计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062 |
[7] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[8] | 蔡晓娟, 谭文安. 一种改进的融合相似度和信任度的协同过滤算法 Improved Collaborative Filtering Algorithm Combining Similarity and Trust 计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088 |
[9] | 何亦琛, 毛宜军, 谢贤芬, 古万荣. 基于点割集图分割的矩阵变换与分解的推荐算法 Matrix Transformation and Factorization Based on Graph Partitioning by Vertex Separator for Recommendation 计算机科学, 2022, 49(6A): 272-279. https://doi.org/10.11896/jsjkx.210600159 |
[10] | 洪志理, 赖俊, 曹雷, 陈希亮, 徐志雄. 基于遗憾探索的竞争网络强化学习智能推荐方法研究 Study on Intelligent Recommendation Method of Dueling Network Reinforcement Learning Based on Regret Exploration 计算机科学, 2022, 49(6): 149-157. https://doi.org/10.11896/jsjkx.210600226 |
[11] | 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩. 基于注意力机制和门控网络相结合的混合推荐系统 Hybrid Recommender System Based on Attention Mechanisms and Gating Network 计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013 |
[12] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[13] | 余皑欣, 冯秀芳, 孙静宇. 结合物品相似性的社交信任推荐算法 Social Trust Recommendation Algorithm Combining Item Similarity 计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217 |
[14] | 陈壮, 邹海涛, 郑尚, 于化龙, 高尚. 基于用户覆盖及评分差异的多样性推荐算法 Diversity Recommendation Algorithm Based on User Coverage and Rating Differences 计算机科学, 2022, 49(5): 159-164. https://doi.org/10.11896/jsjkx.210300263 |
[15] | 唐雨潇, 王斌君. 基于深度生成模型的人脸编辑研究进展 Research Progress of Face Editing Based on Deep Generative Model 计算机科学, 2022, 49(2): 51-61. https://doi.org/10.11896/jsjkx.210400108 |
|