计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 176-183.doi: 10.11896/jsjkx.220900004

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于改进ByteTrack算法的红外地面多目标跟踪方法

王雒, 李飚, 傅瑞罡   

  1. 国防科技大学电子科学学院 长沙 410000
  • 收稿日期:2022-09-01 修回日期:2023-04-14 出版日期:2023-09-15 发布日期:2023-09-01
  • 通讯作者: 傅瑞罡(furuigang08@nudt.edu.cn)
  • 作者简介:(sadgdsgjksad123@qq.com)
  • 基金资助:
    国家自然科学基金(62001482);湖南省自然科学基金(2021JJ40676)

Infrared Ground Multi-object Tracking Method Based on Improved ByteTrack Algorithm

WANG Luo, LI Biao, FU Ruigang   

  1. College of Electronic Science and Technology,National University of Defense Technology,Changsha 410000,China
  • Received:2022-09-01 Revised:2023-04-14 Online:2023-09-15 Published:2023-09-01
  • About author:WANG Luo,born in 1995,postgra-duate.His main research interests include image processing,computer vision and automation target recognition.
    FU Ruigang,born in 1991,Ph.D.His main research interests include image processing,computer vision and automation target recognition.
  • Supported by:
    National Natural Science Foundation of China(62001482) and Natural Science Foundation of Hunan Province,China(2021JJ40676).

摘要: 红外目标智能检测跟踪技术研究一直是同领域中的热点问题,尤其是在精确制导、海面监视和天空预警等方面。针对红外地面多目标跟踪场景中,由地面杂波干扰、多目标遮挡干扰、平台晃动等复杂场景造成的跟踪精度降低等问题,提出了一种基于改进ByteTrack算法的红外地面多目标跟踪方法。首先引用一种自适应调制噪声尺度的卡尔曼滤波器,缓解低质量检测对vanilla卡尔曼滤波器的影响;其次引入增强相关系数最大化算法对帧间图像进行配准,来补偿平台晃动产生的影响;然后增加了基于长短期记忆网络的运动模型,减小了卡尔曼滤波在非线性运动状态中产生的预测误差;最后引入连接模型和高斯平滑算法这两种轻量级离线算法来完善跟踪结果。在红外地面多目标数据集上进行了实验,结果表明,与Sort和Deepsort算法相比,改进算法的MOTA值分别提升了8.3%和10.2%,IDF1值分别提升了6.5%和5.6%。与同类算法相比,改进算法表现出了更好的有效性,在红外目标智能检测跟踪场景中会有较大应用。

关键词: 多目标跟踪, 红外目标, ByteTrack, 卡尔曼滤波, 长短期记忆网络

Abstract: The research of infrared object intelligent detection and tracking technology is always a hot topic in the same field,especially in precision guidance,sea surface surveillance and sky warning.Aiming at the problems that tracking accuracy is reduced due to ground miscellaneous interference,multi-object block interference,platform shaking and other complex scenes,an infrared ground multi-object tracking method based on improved ByteTrack algorithm is proposed.First of all,a modified Kalman filter which could adaptively modulate the noise scale is introduced to alleviate the impact of low-quality detection on vanilla Kalman filter.Secondly,the introduction of enhanced correlation coefficient maximization is used to settle the inter-frame images to compensate the platform shaking impact.Then ByteTrack increases the motion model based on long short-term memory network to solve the prediction error caused by Kalman filter in the non-linear motion state.Finally,two lightweight offline algorithms of link model and Gaussian-smoothed interpolation are introduced to refine the tracking results.Experiment is performed on the infrared ground multi-object dataset and the results show that compared with Sort and DeepSort,the MOTA of the improved algorithm increases by 8.3% and 10.2%,IDF1 increases by 6.5% and 5.6%,respectively.The improved algorithm shows better effectiveness and will be used in the infrared object intelligent detection and tracking scenes.

Key words: Multi-object tracking, Infrared object, ByteTrack, Kalman filter, Long short-term memory network

中图分类号: 

  • TP391.41
[1]LIU C.Multi-object Fault-tolerant Tracking and Trajectory Pre-diction for Unmanned Vehicles [D].Hangzhou:Zhejiang University,2019.
[2]FU R G,FAN H Q,ZHU Y F,et al.A dataset for infrared time-sensitive target detection and tracking for air-ground application [J].China Scientific Data,2022,7(2):203-218.
[3]ZHANG Y F,SUN P Z,JIANG Y,et al.Byte-Track:Multi-object Tracking by Associating Every Detection Box [EB/OL].https://arxiv.org/pdf/2110.06864.pdf,2022.
[4]DU Y H,WAN J F,ZHAO Y Y,et al.A Com-prehensiveFramework for MCMOT With Global Information and Optimizing Strategies in VisDrone 2021[C]//Proceedings of the IEEE/CVF Inter-national Conference on Computer Vision.2021:2809-2819.
[5]ESS A,LEIBE B,SCHINDLER K,et al.A mobile vision system for robust multi-person tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2008:1-8.
[6]DU Y H,SONG Y,YANG B,et al.StrongSORT:Make DeepSORT Great Again [EB/OL].https://arxiv.org/pdf/2202.13514.pdf,2022.
[7]KIM C,LI F,CIPTADI A,et al.Multiple hypothesis trackingrevisited[C]//IEEE International Conference on Computer Vision.2015:4696-4704.
[8]REID D B.An algorithm for tracking multiple targets[J].IEEE Transactions on Automatic Control,1979,24(6):843-854.
[9]YOON J H,YANG M H,LIM J,et al.Bayesian multi-object tracking using motion context from multiple objects[C]//2015 IEEE Winter Conference on Applications of Computer Vision.2015:33-40.
[10]BEWLEY A,GE Z Y,OTT L,et al.Simple Online and Realtime Tracking[C]//2016 IEEE International Conference on Image Processing(ICIP).2016:3464-3468.
[11]WOJKE N,BEWLEY A,PAULUS D,et al.Sim-ple online and real-time tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing(ICIP).2017:3645-3449.
[12]CHEN L,AI H Z,ZHUANG Z J,et al.Real-Time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification [EB/OL].https://arxiv.org/pdf/1809.04427.pdf,2018.
[13]WANG Z D,ZHENG L,LIU Y X,et al.Towards real-timemulti-object tracking [EB/OL].https://arxiv.org/pdf/1909.12605.pdf,2018.
[14]ZHANG Y F,WANG C Y,WANG X G,et al.FairMOT:On the fairness of detection and re-identification in multiple object tracking[EB/OL].https://arxiv.org/pdf/2004.01888.pdf.
[15]ZHOU X Y,KOLTUN V,KRAHENBUHL P,et al.Tracking Objects as Points[EB/OL].https://arxiv.org/pdf/2004.01177.pdf,2020.
[16]WANG L X,ZENG D,ZHU X Q.Space Based Infrared Small Target Detection and Tracking System [J].Industry Control Computer,2022,35(5):39-41.
[17]SONG Z Z,YANG J W,ZHANG D F,et al.Real-time infrared multi-class multi-target anchor-free tracking network[J].Systems Engineering and Electronics,2022,44(2):401-409.
[18]YANG B,LIN S Z,LU X F,et al.Multiple aerial infrared target tracking method based on multi-feature fusion and hierarchical data association [J].Journal of Computer Applications,2022,40(10):3075-3080.
[19]XIE X F,LIU H J,ZHANG L J,et al.Infrared Ship TargetRecognition Fused with Lightweight YOLOv4 and KCF Algorithm[J].Journal of Ordnance Equipment Engineering,2021,42(6):175-182.
[20]YANG W,YAO T,GENG X T,et al.Research on application ofinfrared target recognition technology of air defense weapon based on deep learning[J].Journal of Ordnance Equipment Engineering,2022,43(1):125-129.
[21]ZHENG G,LIU S T,WANG F,et al.YOLOX:Exceeding YOLO Series in 2021 [EB/OL].https://arxiv.org/pdf/2107.08430.pdf,2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!