计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 302-311.doi: 10.11896/jsjkx.210200106

• 计算机网络 • 上一篇    下一篇

GPS拒止环境下基于定位置信度的多无人机协同定位方法

史殿习1,2,3, 刘聪1, 佘馥江2, 张拥军2   

  1. 1 国防科技大学计算机学院 长沙 410073;
    2 军事科学院国防科技创新研究院 北京 100166;
    3 天津(滨海)人工智能创新中心 天津 300457
  • 收稿日期:2021-02-13 修回日期:2021-08-13 发布日期:2022-04-01
  • 通讯作者: 张拥军(yjzhang@nudt.edu.cn)
  • 作者简介:(dxshi@nudt.edu.cn)
  • 基金资助:
    国家重点研发计划(2017YFB1001901)

Cooperation Localization Method Based on Location Confidence of Multi-UAV in GPS-deniedEnvironment

SHI Dian-xi1,2,3, LIU Cong1, SHE Fu-jiang2, ZHANG Yong-jun2   

  1. 1 School of Computer Science, National University of Defense Technology, Changsha 410073, China;
    2 National Innovation Institute of Defense Technology, Academy of Military Sciences, Beijing 100166, China;
    3 Tianjin Artificial Intelligence Innovation Center, Tianjin 300457, China
  • Received:2021-02-13 Revised:2021-08-13 Published:2022-04-01
  • About author:SHI Dian-xi,born in 1966,Ph.D,professor,Ph.D supervisor,is a member of IEEE.His main research interests include distributed object middleware technology,adaptive software technology,artificial intelligence and robot ope-ration systems.ZHANG Yong-jun,born in 1966,Ph.D,professor.His main research interests include artificial intelligence,multi-agent cooperation,machine learning and feature recognition.
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2017YFB1001901).

摘要: GPS拒止环境下的无人机定位问题是目前亟需研究和解决的一个难点问题。针对无人机集群系统在GPS拒止环境下的协同定位问题展开研究,首先,提出了定位置信度的概念,用于量化GPS拒止环境下无人机的定位准确程度;其次,提出了一种基于定位置信度的多无人机协同定位方法,该方法在基于持久性激励的相对定位法的基础上,利用定位置信度,自适应地调节协同定位过程中各无人机自主定位所占比重,以提高无人机集群定位的精度;第三,设计了一个用于融合异构传感器数据的扩展卡尔曼滤波器EKF,可部署于单架无人机上,将协同定位结果融入无人机位姿解算过程中,以提高无人机个体定位的精度;最后,在ROS平台上设计实现了一个多无人机协同定位原型系统,并在Gazebo仿真环境搭建的多无人机飞行场景中进行验证。结果表明,所提出的协同定位方法不仅能够有效缓解传统惯性导航方法的误差累积问题,而且能够有效提高无人机集群定位的精度。

关键词: GPS拒止环境, 定位置信度, 扩展卡尔曼滤波, 无人机, 协同定位

Abstract: The localization of unmanned aerial vehicle (UAV) in GPS-denied environment is a difficult problem to be studied and solved.In this paper, the cooperative localization (CL) of UAV cluster system in GPS-denied environment is the main research points.Firstly, location confidence (LC) is proposed for the quantification of UAV's localization accuracy in GPS-denied environment.Secondly, a LC-based CL method, which can adaptively adjust the cooperative weight of each UAV through persistent excitation-based relative localization, is proposed to improve the accuracy of UAV cluster localization.Thirdly, a expand kalman filtering (EKF) is designed for UAV attitude calculation, which can be equipped in each UAV and used to fusing multi heterogeneous sensor data and the CL output.Finally, a multi-UAV cooperative localization system is implemented on ROS, and is verified in multi-UAV flight simulation scene of Gazebo.The simulation results show that the LC-based CL method can effectively alleviate the error accumulation of traditional inertial navigation system, and improve the accuracy of UAV cluster localization.

Key words: Cooperative localization, Expand kalman filtering, GPS-denied environment, Location confidence, Unmanned aerial vehicle

中图分类号: 

  • TP391
[1] CHUNG S J,PARANJAPE A A,DAMES P,et al.A Survey on Aerial Swarm Robotics[J].IEEE Transactionson Robotics,2018,34(4):837-855.
[2] BALAMURUGAN G,VALARMATHI J,NAIDU V P S.Survey on UAV navigation in GPS denied environments[C]//International Conference on Signal Processing,Communication,Po-wer and Embedded System(SCOPES 2016).2017:198-204.
[3] SOLDADO S I,GARCIA D J,FINAZZI I F,et al.Simless GSM positioning for navigation in GPS-denied environments[J].Aircraft Engineering and Aerospace Technology,2018,90:1072-1076.
[4] NASSAR A,AMER K,ELHAKIM R,et al.A deep CNN-based framework for enhanced aerial imagery registration with applications to UAV geolocalization[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshop.2018:1594-1604.
[5] GOFORTH H,LUCEY S.GPS-Denied UAV Localization using Pre-existing Satellite Imagery[C]//International Conference on Robotics and Automation.2019:2974-2980.
[6] YANG C,STRADER J,GU Y.Cooperative UAV navigationusing inter-vehicle ranging and magnetic anomaly measurements[C]//AIAA Guidance,Navigation,and Control Conference.2018:15-26.
[7] SAADEDDIN K,ABDEK-HAFEZ M F,JARADAT M A,et al.Optimization of intelligent approach for low-cost INS/GPS navigation system[J].Journal of Intelligent and Robotic Systems:Theory and Applications,2014,73(1/2/3/4):325-348.
[8] SUN K,MOHTA K,PFROMMER B,et al.Robust StereoVisual Inertial Odometry for Fast Autonomous Flight[J].IEEE Robotics and Automation Letters,2018,3(2):965-972.
[9] BROSSARD M,BARRAU A,BONNABEL S.Exploiting symmetries to design EKFs with consistency properties for navigation and SLAM[J].IEEE Sensors,2019,19(4):1572-1579.
[10] TRUJILLO J C,MUNGUIA R,GUERRA E,et al.Cooperative monocular- based SLAM for multi-UAV systems in GPS-denied environments[J].Sensors,2018,18(5):1-24.
[11] NGUYEN T M,ZAINI A H,GUO K X,et al.An Ultra-Wideband-based Multi-UAV Localization System in GPS-denied environments[J].Unmanned System,2016,4(1):23-34.
[12] GUO K X,QIU Z,MAO C X,et al.Ultra-Wideband-Based Localization for Quadcopter Navigation[J].Unmanned System,2016,4(1):23-34.
[13] GUO K X,HAN D,XIE L H.Range-based cooperative localization with single landmark[C]//IEEE International Conference on Control and Automation.2017:588-593.
[14] MONICA S,FERRARI G.Low-complexity UWB-based coll-ision avoidance system for automated guided vehicles[J].ICT Express,2016,2(2):53-56.
[15] NGUYEN T M,ZAINI A H,WANG C,et al.Robust Target- Relative Localization with Ultra-Wideband Ranging and Communication[C]//IEEE International Conference on Robotics and Automation.2018:2312-2319.
[16] SIVANERI V O,GROSS J N.UGV-to-UAV cooperative ranging for robust navigation in GNSS-challenged environments[J].Aerospace Science and Technology,2017,71:245-255.
[17] HAN Y,WEI C,LI R,et al.A novel cooperative localization method based on IMU and UWB[J]. Sensors,2020,20(2):467.
[18] KENMOGNE I F,DREVELLE V,MARCHAND E.Using Constraint Propagation for Cooperative UAV Localization from Vision and Ranging[J].Studies in Systems,Decision and Control,2020,276:133-138.
[19] RUSSELL J S,YE M,ANDERSON B D O,et al.Cooperative Localisation of a GPS-Denied UAV in 3-Dimensional Space Using Direction of Arrival Measure-ments[J].IFAC-Papers OnLine,2017,50(1):8019-8024.
[20] LIU J C,ZHANG J J,FENG P D.Swarming aircraft collaborative localization based on mutual rangings[J].Journal of Bejing University of Aeronautics and Astronautics,2012,38(4):541-545.
[21] PAN R H,XU S H.Multi-UAV cooperative navigation algorithm based on geometric characteristics[J].Journal of Ordnance Equipment Engineering,2017,38(10):55-59,96.
[22] GUO K X,LI X,XIE L H.Ultra-wideband andOdometry-Based Cooperative Relative Localization With Application to Multi-UAV Formation Control[J].IEEE Transactions on Cyberne-tics,2019,50(6):2590-2603.
[23] SHE F,ZHANG Y,SHI D,et al.Enhanced Relative Localization Based on Persistent Excitation for Multi-UAVs in GPS-Denied Environments[J].IEEE Access,2020,99:1-13.
[24] JI L,QIAN Z H,BAI R.Attitude estimation and control of quaternion based quad-axis UAV[J].Modern Electronics Technique,2015,11:112-116.
[25] BADGER J,GOODING D,ENSLEY K,et al.Rotors-A Modular Gazebo MAV Simulator Framework[R].Studies in Computational Intelligence,2016,625:15-17.
[1] 蹇奇芮, 陈泽茂, 武晓康.
面向无人机通信的认证和密钥协商协议
Authentication and Key Agreement Protocol for UAV Communication
计算机科学, 2022, 49(8): 306-313. https://doi.org/10.11896/jsjkx.220200098
[2] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[3] 陈博琛, 唐文兵, 黄鸿云, 丁佐华.
基于改进人工势场的未知障碍物无人机编队避障
Pop-up Obstacles Avoidance for UAV Formation Based on Improved Artificial Potential Field
计算机科学, 2022, 49(6A): 686-693. https://doi.org/10.11896/jsjkx.210500194
[4] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[5] 赵耿, 宋鑫宇, 马英杰.
混沌子载波调制的无人机安全数据链路
Secure Data Link of Unmanned Aerial Vehicle Based on Chaotic Sub-carrier Modulation
计算机科学, 2022, 49(3): 322-328. https://doi.org/10.11896/jsjkx.210200022
[6] 成昭炜, 沈航, 汪悦, 王敏, 白光伟.
基于深度强化学习的无人机辅助弹性视频多播机制
Deep Reinforcement Learning Based UAV Assisted SVC Video Multicast
计算机科学, 2021, 48(9): 271-277. https://doi.org/10.11896/jsjkx.201000078
[7] 徐浩, 刘岳镭.
基于深度学习的无人机声音识别算法
UAV Sound Recognition Algorithm Based on Deep Learning
计算机科学, 2021, 48(7): 225-232. https://doi.org/10.11896/jsjkx.200500091
[8] 孙一凡, 米志超, 王海, 赵宁.
基于分簇的拓扑自适应的无人机蜂群OLSR路由协议
Cluster-based Topology Adaptive OLSR Protocol for UAV Swarm Network
计算机科学, 2021, 48(6): 268-275. https://doi.org/10.11896/jsjkx.200500130
[9] 王宇晨, 齐文慧, 徐立臻.
基于区块链的无人机集群安全协作
Security Cooperation of UAV Swarm Based on Blockchain
计算机科学, 2021, 48(11A): 528-532. https://doi.org/10.11896/jsjkx.201100199
[10] 杨章林, 谢钧, 张耕强.
基于定向天线的飞行自组网定向路由协议综述
Review of Directional Routing Protocols for Flying Ad-Hoc Networks Based on Directional Antennas
计算机科学, 2021, 48(11): 334-344. https://doi.org/10.11896/jsjkx.210400182
[11] 赵晓薇, 朱小军, 韩周卿.
面向定位应用的无人机的悬停位置和飞行路径优化
Hover Location Selection and Flight Path Optimization for UAV for Localization Applications
计算机科学, 2021, 48(11): 345-355. https://doi.org/10.11896/jsjkx.201000105
[12] 游文静, 董超, 吴启晖.
大规模无人机自组网分层体系架构研究综述
Survey of Layered Architecture in Large-scale FANETs
计算机科学, 2020, 47(9): 226-231. https://doi.org/10.11896/jsjkx.190900164
[13] 赵学远, 周绍磊, 王帅磊, 闫实.
切换拓扑条件下的多无人机系统编队包含控制
Formation Containment Control of Multi-UAV System Under Switching Topology
计算机科学, 2020, 47(6A): 577-582. https://doi.org/10.11896/JsJkx.190700064
[14] 赵敏,戴凤智.
基于气动参数调节的无人机抗扰动控制算法
Anti-disturbance Control Algorithm of UAV Based on Pneumatic Parameter Regulation
计算机科学, 2020, 47(3): 237-241. https://doi.org/10.11896/jsjkx.190200371
[15] 谭思玚.
小型复合式无人机飞行控制律快速设计与验证
Fast Design and Verification of Flight Control Law for Small Compound UAV
计算机科学, 2020, 47(11A): 651-656. https://doi.org/10.11896/jsjkx.200100026
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!