计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230100036-6.doi: 10.11896/jsjkx.230100036

• 信息安全 • 上一篇    下一篇

基于替代模型的批量零阶梯度符号算法

李炎达, 范纯龙, 滕一平, 于铠博   

  1. 沈阳航空航天大学计算机学院 沈阳 110136
  • 发布日期:2023-11-09
  • 通讯作者: 范纯龙(FanCHL@sau.edu.cn)
  • 作者简介:(1147742111@qq.com)
  • 基金资助:
    国家自然科学基金青年基金(61902260);辽宁省教育厅科学研究资助项目(JYT2020026)

Batch Zeroth Order Gradient Symbol Method Based on Substitution Model

LI Yanda, FAN Chunlong, TENG Yiping, YU Kaibo   

  1. School of Computer Science,Shenyang Aerospace University,Shenyang 110136,China
  • Published:2023-11-09
  • About author:LI Yanda,born in 1999,postgraduate.His main research interests include neural network counterattack and reinforcement learning.
    FAN Chunlong,born in 1973,Ph.D,professor,postgraduate supervisor.His main research interests include interpretability of neural networks,complex network analysis and intelligent system verification.
  • Supported by:
    National Natural Science Foundation of China(61902260) and Scientific Research Project of Education Department of Liaoning Province(JYT2020026).

摘要: 在面向神经网络的对抗攻击领域中,针对黑盒模型进行的通用攻击,如何生成导致多数样本输出错误的通用扰动是亟待解决的问题。然而,现有黑盒通用扰动生成算法的攻击效果不佳,且生成的扰动易被肉眼察觉。针对该问题,以典型卷积神经网络为研究对象,提出基于替代模型的批量零阶梯度符号算法。该算法通过对替代模型集合进行白盒攻击来初始化通用扰动,并在黑盒条件下查询目标模型,实现对通用扰动的稳定高效更新。在CIFAR-10和SVHN两个数据集上的实验结果表明,与基线算法对比,该算法攻击能力显著提升,其生成通用扰动的性能提高了近3倍。

关键词: 卷积神经网络, 通用扰动, 对抗攻击, 黑盒攻击, 替代模型

Abstract: In the field of adversarial attacks for neural networks,for universal attacks on black-box model,how to generate universal perturbation which can cause most sample output errors is an urgent problem to be solved.However,existing black-box universal perturbation generation methods have poor attack effects and the generated perturbations are easy to be detected by the naked eye.To solve this problem,this paper takes the typical convolutional neural networks as the research object and proposed batch zeroth order gradient symbol method based on substitution model.This method initializes universal perturbation with white-box attacks on a set of alternative models,then realizes the stable and efficient updating of the universal perturbation by querying the target model under the black-box condition.Experimental results on two image retrieval datasets(CIFAR-10 and SVHN) show that the attack capability of this method is significantly improved,and the performance of generating universal perturbation is increased by 3 times.

Key words: Convolutional neural network, Universal perturbation, Adversarial attack, Black-box attack, Substitution model

中图分类号: 

  • TP391
[1]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255.
[2]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[EB/OL].https://doi.org/10.48550/arXiv.1312.6199.
[3]KOGA K,TAKEMOTO K.Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification[J].Algorithms,2022,15(5):144.
[4]HAO Z R,CHEN L,HUANG J C.Class Discriminative Universal Adversarial Attack for Text Classification[J].Computer Science,2022,49(8):323-329.
[5]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[EB/OL].https://doi.org/10.48550/arXiv.1706.06083.
[6]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[EB/OL].https://doi.org/10.48550/arXiv.1412.6572.
[7]PAPERNOT N,MCDANIEL P,GOODFELLOW I,et al.Practical black-box attacks against machine learning[C]//Procee-dings of the 2017 ACM on Asia Conference on Computer and Communications Security.2017:506-519.
[8]MOOSAVI-DEZFOOLI S M,FAWZI A,FAWZI O,et al.Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1765-1773.
[9]KURAKIN A,GOODFELLOW I J,BENGIO S.Adversarial examples in the physical world[J].arXiv:1611.01236,2016.
[10]MOOSAVI-DEZFOOLI S M,FAWZI A,FROSSARD P.Deepfool:a simple and accurate method to fool deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2574-2582.
[11]ZHOU M,WU J,LIU Y,et al.Dast:Data-free substitute training for adversarial attacks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:234-243.
[12]CHEN P Y,ZHANG H,SHARMA Y,et al.Zoo:Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.2017:15-26.
[13]SU J,VARGAS D V,SAKURAI K.One pixel attack for fooling deep neural networks[J].IEEE Transactions on Evolutionary Computation,2019,23(5):828-841.
[14]ZHANG C,BENZ P,IMTIAZ T,et al.Cd-uap:Class discriminative universal adversarial perturbation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:6754-6761.
[15]SARKAR S,BANSAL A,MAHBUB U,et al.UPSET and ANGRI:Breaking high performance image classifiers[EB/OL].https://doi.org/10.48550/arXiv.1707.01159.
[16]MOPURI K R,OJHA U,GARG U,et al.Nag:Network for adversary generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:742-751.
[17]FAN C L,LI Y D,XIA X F,et al.A general adversarial attack method based on random gradient Ascent and spherical projection[J].Journal of Northeastern University:Natural Science,2022,43(2):168-175.
[18]ZHANG C,BENZ P,KARJAUV A,et al.Data-free universaladversarial perturbation and black-box attack[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:7868-7877.
[19]WU J,ZHOU M,LIU S,et al.Decision-based universal adversarial attack[EB/OL].https://doi.org/10.48550/arXiv.2009.07024.
[20]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].https://doi.org/10.48550/arXiv.1409.1556.
[21]LIN M,CHEN Q,YAN S.Network in network[EB/OL].https://doi.org/10.48550/arXiv.1312.4400.
[22]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!