Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230100036-6.doi: 10.11896/jsjkx.230100036
• Information Security • Previous Articles Next Articles
LI Yanda, FAN Chunlong, TENG Yiping, YU Kaibo
CLC Number:
[1]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255. [2]SZEGEDY C,ZAREMBA W,SUTSKEVER I,et al.Intriguing properties of neural networks[EB/OL].https://doi.org/10.48550/arXiv.1312.6199. [3]KOGA K,TAKEMOTO K.Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification[J].Algorithms,2022,15(5):144. [4]HAO Z R,CHEN L,HUANG J C.Class Discriminative Universal Adversarial Attack for Text Classification[J].Computer Science,2022,49(8):323-329. [5]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards deep learning models resistant to adversarial attacks[EB/OL].https://doi.org/10.48550/arXiv.1706.06083. [6]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[EB/OL].https://doi.org/10.48550/arXiv.1412.6572. [7]PAPERNOT N,MCDANIEL P,GOODFELLOW I,et al.Practical black-box attacks against machine learning[C]//Procee-dings of the 2017 ACM on Asia Conference on Computer and Communications Security.2017:506-519. [8]MOOSAVI-DEZFOOLI S M,FAWZI A,FAWZI O,et al.Universal adversarial perturbations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1765-1773. [9]KURAKIN A,GOODFELLOW I J,BENGIO S.Adversarial examples in the physical world[J].arXiv:1611.01236,2016. [10]MOOSAVI-DEZFOOLI S M,FAWZI A,FROSSARD P.Deepfool:a simple and accurate method to fool deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2574-2582. [11]ZHOU M,WU J,LIU Y,et al.Dast:Data-free substitute training for adversarial attacks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:234-243. [12]CHEN P Y,ZHANG H,SHARMA Y,et al.Zoo:Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security.2017:15-26. [13]SU J,VARGAS D V,SAKURAI K.One pixel attack for fooling deep neural networks[J].IEEE Transactions on Evolutionary Computation,2019,23(5):828-841. [14]ZHANG C,BENZ P,IMTIAZ T,et al.Cd-uap:Class discriminative universal adversarial perturbation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:6754-6761. [15]SARKAR S,BANSAL A,MAHBUB U,et al.UPSET and ANGRI:Breaking high performance image classifiers[EB/OL].https://doi.org/10.48550/arXiv.1707.01159. [16]MOPURI K R,OJHA U,GARG U,et al.Nag:Network for adversary generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:742-751. [17]FAN C L,LI Y D,XIA X F,et al.A general adversarial attack method based on random gradient Ascent and spherical projection[J].Journal of Northeastern University:Natural Science,2022,43(2):168-175. [18]ZHANG C,BENZ P,KARJAUV A,et al.Data-free universaladversarial perturbation and black-box attack[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:7868-7877. [19]WU J,ZHOU M,LIU S,et al.Decision-based universal adversarial attack[EB/OL].https://doi.org/10.48550/arXiv.2009.07024. [20]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].https://doi.org/10.48550/arXiv.1409.1556. [21]LIN M,CHEN Q,YAN S.Network in network[EB/OL].https://doi.org/10.48550/arXiv.1312.4400. [22]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. |
[1] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[2] | YI Liu, GENG Xinyu, BAI Jing. Hierarchical Multi-label Text Classification Algorithm Based on Parallel Convolutional Network Information Fusion [J]. Computer Science, 2023, 50(9): 278-286. |
[3] | ZHOU Fengfan, LING Hefei, ZHANG Jinyuan, XIA Ziwei, SHI Yuxuan, LI Ping. Facial Physical Adversarial Example Performance Prediction Algorithm Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(8): 280-285. |
[4] | LI Kun, GUO Wei, ZHANG Fan, DU Jiayu, YANG Meiyue. Adversarial Malware Generation Method Based on Genetic Algorithm [J]. Computer Science, 2023, 50(7): 325-331. |
[5] | ZHAO Ran, YUAN Jiabin, FAN Lili. Medical Ultrasound Image Super-resolution Reconstruction Based on Video Multi-frame Fusion [J]. Computer Science, 2023, 50(7): 143-151. |
[6] | HUANG Yujiao, CHEN Mingkai, ZHENG Yuan, FAN Xinggang, XIAO Jie, LONG Haixia. Text Classification Based on Weakened Graph Convolutional Networks [J]. Computer Science, 2023, 50(6A): 220700039-5. |
[7] | LUO Ruiqi, YAN Jinlin, HU Xinrong, DING Lei. EEG Emotion Recognition Based on Multiple Directed Weighted Graph and ConvolutionalNeural Network [J]. Computer Science, 2023, 50(6A): 220600128-8. |
[8] | LI Han, HOU Shoulu, TONG Qiang, CHEN Tongtong, YANG Qimin, LIU Xiulei. Entity Relation Extraction Method in Weapon Field Based on DCNN and GLU [J]. Computer Science, 2023, 50(6A): 220200112-7. |
[9] | XU Changqian, WANG Dong, SU Feng, ZHANG Jun, BIAN Haifeng, LI Long. Image Recognition Method of Transmission Line Safety Risk Assessment Based on MultidimensionalData Coupling [J]. Computer Science, 2023, 50(6A): 220500032-6. |
[10] | LUO Huilan, LONG Jun, LIANG Miaomiao. Attentional Feature Fusion Approach for Siamese Network Based Object Tracking [J]. Computer Science, 2023, 50(6A): 220300237-9. |
[11] | XIONG Haojie, WEI Yi. Study on Multibeam Sonar Elevation Data Prediction Based on Improved CNN-BP [J]. Computer Science, 2023, 50(6A): 220100161-4. |
[12] | WANG Jinwei, ZENG Kehui, ZHANG Jiawei, LUO Xiangyang, MA Bin. GAN-generated Face Detection Based on Space-Frequency Convolutional Neural Network [J]. Computer Science, 2023, 50(6): 216-224. |
[13] | ZHANG Xue, ZHAO Hui. Sentiment Analysis Based on Multi-event Semantic Enhancement [J]. Computer Science, 2023, 50(5): 238-247. |
[14] | WANG Lin, MENG Zuqiang, YANG Lina. Chinese Sentiment Analysis Based on CNN-BiLSTM Model of Multi-level and Multi-scale Feature Extraction [J]. Computer Science, 2023, 50(5): 248-254. |
[15] | YE Han, LI Xin, SUN Haichun. Convolutional Network Entity Missing Detection Method Combined with Gated Mechanism [J]. Computer Science, 2023, 50(5): 262-269. |
|